1、weights
训练所得权重
2、confusion_matrix
混淆矩阵
列代表预测的类别,行代表实际的类别。其对角线上的值表示预测正确的数量比例,非对角线元素则是预测错误的部分。混淆矩阵的对角线值越高越好,这表明许多预测是正确的。
3、F1_curve
F1得分与置信度关系
x轴为置信度,y轴为F1得分
4、hyp.yaml
训练相关超参数
5、labels
一共四张图
左一:每个类别的数据量
右一:labels的 bounding_box
左二:labels的中心点坐标
右二:labels的矩阵宽高
6、labels_correlogram
labels的中心点x,y和矩阵宽高w,h
顶端对角线上:各自的分布直方图
其余位置:相互之间的分布情况
7、opt.yaml
最优参数
8、P_curve
准确率与置信度关系
9、PR_curve
PR曲线中的P代表的是precision(精准率),R代表的是recall(召回率),其代表的是精准率与召回率的关系,一般情况下,将recall设置为横坐标,precision设置为纵坐标。PR曲线下围成的面积即AP,所有类别AP平均值即Map.
如果PR图的其中的一个曲线A完全包住另一个学习器的曲线B,则可断言A的性能优于B,当A和B发生交叉时,可以根据曲线下方的面积大小来进行比较。一般训练结果主要观察精度和召回率波动情况(波动不是很大则训练效果较好)
Precision和Recall往往是一对矛盾的性能度量指标;
提高Precision == 提高二分类器预测正例门槛 == 使得二分类器预测的正例尽可能是真实正例;
提高Recall == 降低二分类器预测正例门槛 == 使得二分类器尽可能将真实的正例挑选
10、R_curve
召回率和置信度之间的关系
11、results.csv
每一次迭代对应的
- train/box_loss, train/obj_loss, train/cls_loss
- metrics/precision,metrics/recall,metrics/mAP_0.5,metrics/mAP_0.5:0.95
- val/box_loss, val/obj_loss,val/cls_loss,x/lr0, x/lr1, x/lr2
12、results
- Box_loss:YOLO V5使用 GIOU Loss作为bounding box的损失,Box推测为GIoU损失函数均值,越小方框越准;
- Objectness_loss:推测为目标检测loss均值,越小目标检测越准;
- Classification_loss:推测为分类loss均值,越小分类越准;
- Precision:精度(找对的正类/所有找到的正类);
- Recall:真实为positive的准确率,即正样本有多少被找出来了(召回了多少).Recall从真实结果角度出发,描述了测试集中的真实正例有多少被二分类器挑选了出来,即真实的正例有多少被该二分类器召回。
- val Box_loss: 验证集bounding box损失;
- val Objectness_loss:验证集目标检测loss均值;
- val classification_loss:验证集分类loss均值;
- [email protected]:.95(mAP@[.5:.95]): 表示在不同IoU阈值(从0.5到0.95,步长0.05)(0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95)上的平均mAP。[email protected]:表示阈值大于0.5的平均mAP。然后观察mAP@0.5 & mAP@0.5:0.95 评价训练结果。mAP是用Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值,@0.5:0.95表示阈值取0.5:0.05:0.95后取均值
部分参考:
https://blog.csdn.net/weixin_44570845/article/details/121337026
https://github.com/ultralytics/yolov5/issues/5138
版权归原作者 圆仔1122 所有, 如有侵权,请联系我们删除。