0


YOLOv5的head详解

YOLOv5的head详解
在前两篇文章中我们对YOLO的backbone和neck进行了详尽的解读,如果有小伙伴没看这里贴一下传送门:
YOLOv5的Backbone设计
YOLOv5的Neck端设计
在这篇文章中,我们将针对YOLOv5的head进行解读,head虽然在网络中占比最少,但这却是YOLO最核心的内容,话不多说,进入正题。

1 YOLOv5s网络结构总览

要了解head,就不能将其与前两部分割裂开。head中的主体部分就是三个Detect检测器,即利用基于网格的anchor在不同尺度的特征图上进行目标检测的过程。由下面的网络结构图可以很清楚的看出:当输入为640*640时,三个尺度上的特征图分别为:80x80、40x40、20x20。现在问题的关键变为,Detect的过程细节是怎样的?如何在多个检测框中选择效果最好的?
在这里插入图片描述

2 YOLO核心:Detect

首先看一下yolo中Detect的源码组成:

classDetect(nn.Module):
    stride =None# strides computed during build
    onnx_dynamic =False# ONNX export parameterdef__init__(self, nc=80, anchors=(), ch=(), inplace=True):# detection layersuper().__init__()
        self.nc = nc  # number of classes
        self.no = nc +5# number of outputs per anchor
        self.nl =len(anchors)# number of detection layers
        self.na =len(anchors[0])//2# number of anchors
        self.grid =[torch.zeros(1)]* self.nl  # init grid
        self.anchor_grid =[torch.zeros(1)]* self.nl  # init anchor grid
        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl,-1,2))# shape(nl,na,2)
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na,1)for x in ch)# output conv
        self.inplace = inplace  # use in-place ops (e.g. slice assignment)defforward(self, x):
        z =[]# inference outputfor i inrange(self.nl):
            x[i]= self.m[i](x[i])# conv
            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i]= x[i].view(bs, self.na, self.no, ny, nx).permute(0,1,3,4,2).contiguous()ifnot self.training:# inferenceif self.grid[i].shape[2:4]!= x[i].shape[2:4]or self.onnx_dynamic:
                    self.grid[i], self.anchor_grid[i]= self._make_grid(nx, ny, i)

                y = x[i].sigmoid()if self.inplace:
                    y[...,0:2]=(y[...,0:2]*2.-0.5+ self.grid[i])* self.stride[i]# xy
                    y[...,2:4]=(y[...,2:4]*2)**2* self.anchor_grid[i]# whelse:# for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                    xy =(y[...,0:2]*2.-0.5+ self.grid[i])* self.stride[i]# xy
                    wh =(y[...,2:4]*2)**2* self.anchor_grid[i]# wh
                    y = torch.cat((xy, wh, y[...,4:]),-1)
                z.append(y.view(bs,-1, self.no))return x if self.training else(torch.cat(z,1), x)def_make_grid(self, nx=20, ny=20, i=0):
        d = self.anchors[i].device
        yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
        grid = torch.stack((xv, yv),2).expand((1, self.na, ny, nx,2)).float()
        anchor_grid =(self.anchors[i].clone()* self.stride[i]) \
            .view((1, self.na,1,1,2)).expand((1, self.na, ny, nx,2)).float()return grid, anchor_grid

Detect很重要,但是内容不多,那我们就将其解剖开来,一部分一部分地看。

2.1 initial部分

def__init__(self, nc=80, anchors=(), ch=(), inplace=True):# detection layersuper().__init__()
        self.nc = nc  # number of classes
        self.no = nc +5# number of outputs per anchor
        self.nl =len(anchors)# number of detection layers
        self.na =len(anchors[0])//2# number of anchors
        self.grid =[torch.zeros(1)]* self.nl  # init grid
        self.anchor_grid =[torch.zeros(1)]* self.nl  # init anchor grid
        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl,-1,2))# shape(nl,na,2)
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na,1)for x in ch)# output conv
        self.inplace = inplace  # use in-place ops (e.g. slice assignment)
        self.anchor=anchors

initial部分定义了Detect过程中的重要参数
**1. nc:**类别数目
**2. no:**每个anchor的输出,包含类别数nc+置信度1+xywh4,故nc+5
**3. nl:**检测器的个数。以上图为例,我们有3个不同尺度上的检测器:[[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]],故检测器个数为3。
**4. na:**每个检测器中anchor的数量,个数为3。由于anchor是w h连续排列的,所以需要被2整除。
**5. grid:**检测器Detect的初始网格
**6. anchor_grid:**anchor的初始网格
7. m:每个检测器的最终输出,即检测器中anchor的输出no×anchor的个数nl。打印出来很好理解(60是因为我的数据集nc为15,coco是80):

ModuleList((0): Conv2d(128,60, kernel_size=(1,1), stride=(1,1))(1): Conv2d(256,60, kernel_size=(1,1), stride=(1,1))(2): Conv2d(512,60, kernel_size=(1,1), stride=(1,1)))

2.2 forward

defforward(self, x):
        z =[]# inference outputfor i inrange(self.nl):
            x[i]= self.m[i](x[i])# conv
            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i]= x[i].view(bs, self.na, self.no, ny, nx).permute(0,1,3,4,2).contiguous()ifnot self.training:# inferenceif self.grid[i].shape[2:4]!= x[i].shape[2:4]or self.onnx_dynamic:
                    self.grid[i], self.anchor_grid[i]= self._make_grid(nx, ny, i)

                y = x[i].sigmoid()if self.inplace:
                    y[...,0:2]=(y[...,0:2]*2.-0.5+ self.grid[i])* self.stride[i]# xy
                    y[...,2:4]=(y[...,2:4]*2)**2* self.anchor_grid[i]# whelse:# for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                    xy =(y[...,0:2]*2.-0.5+ self.grid[i])* self.stride[i]# xy
                    wh =(y[...,2:4]*2)**2* self.anchor_grid[i]# wh
                    y = torch.cat((xy, wh, y[...,4:]),-1)
                z.append(y.view(bs,-1, self.no))return x if self.training else(torch.cat(z,1), x)

在forward操作中,网络接收3个不同尺度的特征图,如下图所示:
在这里插入图片描述

for i inrange(self.nl):
    x[i]= self.m[i](x[i])# conv
    bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
    x[i]= x[i].view(bs, self.na, self.no, ny, nx).permute(0,1,3,4,2).contiguous()

网络的for loop次数为3,也就是依次在这3个特征图上进行网格化预测,利用卷积操作得到通道数为no×nl的特征输出。拿128x80x80举例,在nc=15的情况下经过卷积得到60x80x80的特征图,这个特征图就是后续用于格点检测的特征图。

ifnot self.training:# inferenceif self.grid[i].shape[2:4]!= x[i].shape[2:4]or self.onnx_dynamic:
                    self.grid[i], self.anchor_grid[i]= self._make_grid(nx, ny, i)
def_make_grid(self, nx=20, ny=20, i=0):
        d = self.anchors[i].device
        yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
        grid = torch.stack((xv, yv),2).expand((1, self.na, ny, nx,2)).float()
        anchor_grid =(self.anchors[i].clone()* self.stride[i]) \
            .view((1, self.na,1,1,2)).expand((1, self.na, ny, nx,2)).float()return grid, anchor_grid

随后就是基于经过检测器卷积后的特征图划分网格,网格的尺寸是与输入尺寸相同的,如20x20的特征图会变成20x20的网格,那么一个网格对应到原图中就是32x32像素;40x40的一个网格就会对应到原图的16x16像素,以此类推。

y = x[i].sigmoid()if self.inplace:
                    y[...,0:2]=(y[...,0:2]*2.-0.5+ self.grid[i])* self.stride[i]# xy
                    y[...,2:4]=(y[...,2:4]*2)**2* self.anchor_grid[i]# whelse:# for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                    xy =(y[...,0:2]*2.-0.5+ self.grid[i])* self.stride[i]# xy
                    wh =(y[...,2:4]*2)**2* self.anchor_grid[i]# wh
                    y = torch.cat((xy, wh, y[...,4:]),-1)
                z.append(y.view(bs,-1, self.no))

这里其实就是预测偏移的主体部分了。

y[...,0:2]=(y[...,0:2]*2.-0.5+ self.grid[i])* self.stride[i]# xy

这一句是对x和y进行预测。x、y在输入网络前都是已经归一好的(0,1),乘以2再减去0.5就是(-0.5,1.5),也就是让x、y的预测能够跨网格进行。后边

self.grid[i]) * self.stride[i]

就是将相对位置转为网格中的绝对位置了。

y[...,2:4]=(y[...,2:4]*2)**2* self.anchor_grid[i]# wh

这里对宽和高进行预测,没啥好说的。

z.append(y.view(bs,-1, self.no))

最后将结果填入z


本文转载自: https://blog.csdn.net/weixin_43427721/article/details/123668444
版权归原作者 Marlowee 所有, 如有侵权,请联系我们删除。

“YOLOv5的head详解”的评论:

还没有评论