如何应对缺失值带来的分布变化?探索填充缺失值的最佳插补算法
本文将探讨了缺失值插补的不同方法,并比较了它们在复原数据真实分布方面的效果,处理插补是一个不确定性的问题,尤其是在样本量较小或数据复杂性高时的挑战,应选择能够适应数据分布变化并准确插补缺失值的方法。
使用MICE进行缺失值的填充处理
MICE(Multiple Imputation by Chained Equations)是一种常用的填充缺失数据的技术。它通过将待填充的数据集中的每个缺失值视为一个待估计的参数,然后使用其他观察到的变量进行预测。