AI推理方法演进:CoT、ToT与GoT技术对比分析

从CoT到GoT的演进轨迹展现了AI推理范式的根本性变革:从单一路径的顺序推理转向多维度的并行思维模拟。这一进程标志着大语言模型研究重心从参数规模竞争转向认知机制建模。

GenPRM:思维链+代码验证,通过生成式推理的过程奖励让大模型推理准确率显著提升

论文提出了GenPRM,一种创新性的生成式过程奖励模型。该模型在评估每个推理步骤前,先执行显式的思维链(Chain-of-Thought, CoT)推理并实施代码验证,从而实现对推理过程的深度理解与评估。

GoT:基于思维链的语义-空间推理框架为视觉生成注入思维能力

GoT框架通过引入"思维链"机制突破了这一限制,该机制在生成图像前会展开结构化推理过程。

Chain of Draft: 借鉴人类草稿思维让大型语言模型更快地思考

这个研究探讨了大型语言模型(LLMs)在执行复杂推理任务时面临的计算资源消耗与响应延迟问题。研究特别聚焦于思维链(Chain-of-Thought, CoT)提示范式的效率局限性。

CoAT: 基于蒙特卡洛树搜索和关联记忆的大模型推理能力优化框架

研究者提出了一种新的关联思维链(Chain-of-Associated-Thoughts, CoAT)方法,该方法通过整合蒙特卡洛树搜索(Monte Carlo Tree Search, MCTS)和关联记忆机制来提升大语言模型(LLMs)的推理能力。

Meta-CoT:通过元链式思考增强大型语言模型的推理能力

Meta-CoT 基于链式思考(CoT)方法,使 LLMs 不仅能够建模推理步骤,还能够模拟“思考”过程。这种转变类似于人类在面对难题时的探索、评估和迭代方式。

登录可以使用的更多功能哦! 登录
作者榜
...
资讯小助手

资讯同步

...
内容小助手

文章同步

...
Deephub

公众号:deephub-imba

...
奕凯

公众号:奕凯的技术栈