面向技术型领导:关于生成式人工智能你必须面对的5大残酷现实

创造真正商业价值的生成式 AI 需要付出真正的努力,但这绝对值得。生成式 AI (Generative AI) 已经无处不在。各行各业的组织正迫切要求他们的团队加入这场风潮 — 有 77% 的商业领导 担心他们已经错过了利用生成式 AI 的机遇。数据团队正在努力应对这一挑战。但是,打造一个真正能促进

RAG中的3个高级检索技巧

本文将探讨三种有效的技术来增强基于rag的应用程序中的文档检索,通过结合这些技术,可以检索与用户查询密切匹配的更相关的文档,从而生成更好的答案。

使用CLIP和LLM构建多模态RAG系统

在本文中我们将探讨使用开源大型语言多模态模型(Large Language Multi-Modal)构建检索增强生成(RAG)系统。本文的重点是在不依赖LangChain或LLlama index的情况下实现这一目标,这样可以避免更多的框架依赖。

使用LOTR合并检索提高RAG性能

RAG结合了两个关键元素:检索和生成。本文将介绍使用使用Merge retriver改进RAG的性能

Chain-Of-Note:解决噪声数据、不相关文档和域外场景来改进RAG的表现

这是腾讯实验室在11月最新发布的一篇论文,CoN的核心思想是生成连续的阅读笔记对于检索到的文档,能够对其与给出问题并综合这些信息来形成最终的答案,提高了RAG的表现。

使用Llama index构建多代理 RAG

检索增强生成(RAG)已成为增强大型语言模型(LLM)能力的一种强大技术。通过从知识来源中检索相关信息并将其纳入提示,RAG为LLM提供了有用的上下文,以产生基于事实的输出。

登录可以使用的更多功能哦! 登录
作者榜
...
资讯小助手

资讯同步

...
内容小助手

文章同步

...
Deephub

公众号:deephub-imba

...
奕凯

公众号:奕凯的技术栈