闭源与开源嵌入模型比较以及提升语义搜索效果的技术探讨

对于嵌入技术的新手,希望本文能为你提供有价值的见解。对于已经熟悉这一领域的读者,希望本文关于使用较小与较大嵌入模型的经济性分析能够带来新的思考。值得注意的是,在大型语言模型(LLM)领域,许多闭源模型正在领先;但在嵌入模型方面,情况并非如此。本文的一个重要结论是:不要忽视较小的、计算效率更高的模型。

CODEXGRAPH:突破代码与AI的壁垒,开启智能编程新时代

论文首先介绍了大型语言模型(LLMs)在代码生成和理解任务中的重要性,但也指出当前LLMs在处理整个代码库时面临的挑战。这些挑战包括难以处理长上下文输入以及在复杂代码结构中进行推理的能力不足。现有的解决方案,如基于相似性的检索方法和手动工具/API,虽然在特定任务中有效,但在应对复杂的代码库任务时表

GraphRAG 与 RAG 的比较分析

Graph RAG 技术通过引入图结构化的知识表示和处理方法,显著增强了传统 RAG 系统的能力。它不仅提高了信息检索的准确性和完整性,还为复杂查询和多步推理提供了更强大的支持。

让模型评估模型:构建双代理RAG评估系统的步骤解析

我们将介绍一个基于双代理的RAG(检索增强生成)评估系统。该系统使用生成代理和反馈代理,基于预定义的测试集对输出进行评估。或者更简单的说,我们使用一个模型来评估另外一个模型的输出。

MemLong: 基于记忆增强检索的长文本LLM生成方法

本文将介绍MemLong,这是一种创新的长文本语言模型生成方法。MemLong通过整合外部检索器来增强模型处理长上下文的能力,从而显著提升了大型语言模型(LLM)在长文本处理任务中的表现。

检索增强生成RAG系列9--RAG开源开发框架

当然还有许多优秀的框架没有介绍,有些可能也跟RAG相关比如open-webui等,这里就不一一列举。无论你使用较为底层Langchain或者LlamaIndex,还是使用dify较为低代码方式构建你的RAG,都是要根据你的业务场景来决定选择哪些开发框架。这里只是提供对于相关实践信息供大家参考,主要是

深入 Dify 源码,洞察 Dify RAG 核心机制

之前深入源码对 Dify 的完整流程进行了解读,基本上梳理了 Dify 的实现流程与主要组件。但是在实际部署之后,发现 Dify 现有的 RAG 检索效果没有那么理想。因此个人结合前端页面,配置信息与实现流程,深入查看了私有化部署的 Dify 的技术细节。将核心内容整理在这边,方便大家根据实际的业务

基于Neo4j将知识图谱用于检索增强生成:Knowledge Graphs for RAG

Write advanced Cypher queries to retrieve relevant information from the graph and format it for inclusion in your prompt to an LLM.

构建基于 LlamaIndex 的RAG AI Agent

构建基于 LlamaIndex 的RAG AI智能体

微软开源GraphRAG的使用教程-使用自定义数据测试GraphRAG

这篇文章主要介绍了微软开源的GraphRAG的安装教程,并以《太白金星有点烦》为例,动手实操测试了下GraphRAG的实际效果。

RAG vs 意图识别:AI领域的新较量

总的来说,RAG是一种增强语言模型回答能力的框架,它通过检索和利用外部知识来生成回答;意图识别是对话理解的一部分,它帮助系统理解用户的意图并作出相应的反应。两者的选择应基于具体的应用需求、系统设计和预期的用户交互方式。两者在构建交互式AI系统中扮演着不同但互补的角色。RAG适合于需要结合大量。

RAG流程优化(微调)的4个基本策略

在本文中,我们将介绍使用私有数据优化检索增强生成(RAG)的四种策略,可以提升生成任务的质量和准确性。通过使用一些优化策略,可以有效提升检索增强生成系统的性能和输出质量,使其在实际应用中能够更好地满足需求。

AI实践与学习4_大模型之检索增强生成RAG实践

论文Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks (知识密集型 NLP 任务的检索增强生成)作者们探讨了如何通过结合预训练的语言模型和非参数记忆(即检索机制)来提高自然语言处理(NLP)任务的性能,特别是在需要大量知

Multi-Head RAG:多头注意力的激活层作为嵌入进行文档检索

论文引入了多头RAG (MRAG),这是一种利用Transformer的多头注意层的激活而不是解码器层作为获取多方面文档的新方案。

【大模型】Ollama+open-webui/Anything LLM部署本地大模型构建RAG个人知识库教程(Mac)

如果需要,可以使用AnythingLLM的开发者API进行自定义集成,以满足特定的业务需求。

为什么你的RAG不起作用?失败的主要原因和解决方案

本文的目标是揭示普通RAG失败的主要原因,并提供具体策略和方法,使您的RAG更接近生产阶段。

整合LlamaIndex与LangChain构建高级的查询处理系统

本篇文章将介绍如何将LlamaIndex和LangChain整合使用,创建一个既可扩展又可定制的代理RAG(Retrieval-Augmented Generation)应用程序,利用两种技术的强大功能,开发出能够处理复杂查询并提供精准答案的高效应用程序。

整合文本和知识图谱嵌入提升RAG的性能

在RAG模型中,文本嵌入和知识嵌入都允许对输入文本和结构化知识进行更全面、上下文更丰富的表示。这种集成增强了模型在答案检索、答案生成、对歧义的鲁棒性和结构化知识的有效结合方面的性能,最终导致更准确和信息丰富的响应。

登录可以使用的更多功能哦! 登录
作者榜
...
资讯小助手

资讯同步

...
内容小助手

文章同步

...
Deephub

公众号:deephub-imba

...
奕凯

公众号:奕凯的技术栈