机器学习:基于PCA对人脸识别数据降维并建立KNN模型检验
PCA(Principal Component Analysis)是一种常用的数据降维方法,通过线性变换将高维数据映射到低维空间,同时尽量保留原始数据的信息。PCA的主要思想是将原始数据的各个特征进行线性组合,使得新特征能够最大程度地保留原始数据的方差,从而达到降维的目的。
KNN中不同距离度量对比和介绍
本文演示了KNN与三种不同距离度量(Euclidean、Minkowski和Manhattan)的使用。
【Python机器学习】KNN进行水果分类和分类器实战(附源码和数据集)
【Python机器学习】KNN进行水果分类和分类器实战(附源码和数据集)
使用KNN进行分类和回归
一般情况下k-Nearest Neighbor (KNN)都是用来解决分类的问题,其实KNN是一种可以应用于数据分类和预测的简单算法,本文中我们将它与简单的线性回归进行比较。