0


【简单模拟添加并合并通讯录~python+】

目录


个人昵称:lxw-pro
个人主页:欢迎关注 我的主页
个人感悟: “失败乃成功之母”,这是不变的道理,在失败中总结,在失败中成长,才能成为IT界的一代宗师。

添加并合并通讯录

无论是之前的按键机还是如今的智能机,通讯录都是大家最为熟知、最为经常使用的一个功能,现在我们就简单来模拟模拟用python来添加并合并通讯录叭!

相关程序代码如下:

n = int(input("请输入要添加通讯录的人数:"))
a = []
for i in range(n):
    con_dict = {}
    name = input('请输入添加的联系人姓名:')
    telephone = input('请输入11位电话号码:')
    email = input('请输入邮件:')
    address = input('请输入地址:')
    info = f"tele:{telephone}, email:{email}, add:{address}"
    con_dict[name] = info
    print('第', i+1, '本通信录中的联系人信息为', con_dict)

    set1 = set(con_dict)
    a.append(set1)
    print('通信录现加的联系人:', set1)

print('通信录合并后的联系人有', a)

运行效果如下:

在这里插入图片描述
————————————————————————————————————————————

Pandas 每日一练:

# -*- coding = utf-8 -*-# @Time : 2022/8/24 14:03# @Author : lxw_pro# @File : pandas-13 练习.py# @Software : PyCharmimport pandas as pd
import numpy as np

81、导入并查看pandas与numpy版本

print("此时电脑所拥有pandas的版本号为:", pd.__version__)print("此时电脑所拥有numpy的版本号为:", np.__version__)

运行结果如下:

此时电脑所拥有pandas的版本号为: 1.3.5
此时电脑所拥有numpy的版本号为: 1.21.4

82、从Numpy数组创建DataFrame

tmp1 = np.random.randint(1,100,10)
df1 = pd.DataFrame(tmp1)print(df1)

运行结果如下:

0082135240335484583627739889913

83、从Numpy数组创建DataFrame

tmp2 = np.arange(0,100,5)
df2 = pd.DataFrame(tmp2)print(df2)

运行结果如下:

000152103154205256307358409451050115512601365147015751680178518901995

84、从Numpy数组创建DataFrame

tmp3 = np.random.normal(0,1,20)
df3 = pd.DataFrame(tmp3)print(df3)

运行结果如下:

001.1915701-1.3936872-1.8546333-1.35740840.1068855-0.80773362.42314470.61846780.3319699-1.11327010-0.431672110.333612120.39020713-0.30511914-1.105575151.005282161.28534717-1.111543181.62886719-0.833661

85、将df1、df2、df3按照行合并为新DataFrame

df = pd.concat([df1, df2, df3], axis=0, ignore_index=True)print(df)

运行结果如下:

0082.000000135.000000240.000000335.000000484.000000583.000000627.000000739.000000889.000000913.000000100.000000115.0000001210.0000001315.0000001420.0000001525.0000001630.0000001735.0000001840.0000001945.0000002050.0000002155.0000002260.0000002365.0000002470.0000002575.0000002680.0000002785.0000002890.0000002995.000000301.19157031-1.39368732-1.85463333-1.357408340.10688535-0.807733362.423144370.618467380.33196939-1.11327040-0.431672410.333612420.39020743-0.30511944-1.105575451.005282461.28534747-1.111543481.62886749-0.833661

86、将df1、df2、df3按照列合并为新DataFrame

df = pd.concat([df1, df2, df3], axis=1, ignore_index=True)print(df)

运行结果如下:

012082.001.191570135.05-1.393687240.010-1.854633335.015-1.357408484.0200.106885583.025-0.807733627.0302.423144739.0350.618467889.0400.331969913.045-1.11327010   NaN  50-0.43167211   NaN  550.33361212   NaN  600.39020713   NaN  65-0.30511914   NaN  70-1.10557515   NaN  751.00528216   NaN  801.28534717   NaN  85-1.11154318   NaN  901.62886719   NaN  95-0.833661

87、查找df所有数据的最小值、25%分位数、中位数、75%分位数、最大值

ms = df.describe()print(ms)

运行结果如下:

012
count  10.00000020.00000020.000000
mean   52.70000047.500000-0.049948
std    28.45288529.5803991.166953min13.0000000.000000-1.85463325%35.00000023.750000-1.10706750%39.50000047.500000-0.09911775%82.75000071.2500000.715171max89.00000095.0000002.423144

88、修改列名为col1、col2、col3

df.columns =['col1','col2','col3']print(df)

运行结果如下:

    col1  col2      col3
082.001.191570135.05-1.393687240.010-1.854633335.015-1.357408484.0200.106885583.025-0.807733627.0302.423144739.0350.618467889.0400.331969913.045-1.11327010   NaN    50-0.43167211   NaN    550.33361212   NaN    600.39020713   NaN    65-0.30511914   NaN    70-1.10557515   NaN    751.00528216   NaN    801.28534717   NaN    85-1.11154318   NaN    901.62886719   NaN    95-0.833661

89、提取第一列中不在第二列出现的数字

print(df['col1'][df['col1'].isin(df['col2'])])

运行结果如下:

135.0240.0335.0
Name: col1, dtype: float64

90、提取第一列和第二列出现频率最高的三个数字

tmp = df['col1'].append(df['col2'])print(tmp.value_counts().index[:3])

运行结果如下:

Float64Index([35.0,40.0,82.0], dtype='float64')

每日一言:

你必须按所想去生活,否则你只能按生活去想!!!


持续更新中…

点赞,你的认可是我创作的

动力


收藏,你的青睐是我努力的

方向


评论,你的意见是我进步的

财富


关注,你的喜欢是我长久的

坚持


在这里插入图片描述

欢迎关注微信公众号【程序人生6】,一起探讨学习哦!!!


本文转载自: https://blog.csdn.net/m0_66318554/article/details/125750652
版权归原作者 lxw-pro 所有, 如有侵权,请联系我们删除。

“【简单模拟添加并合并通讯录~python+】”的评论:

还没有评论