分类目录:《深入浅出TensorFlow2函数》总目录
语法
tf.rank(input, name=None)
参数
input
:tf.Tensor
或tf.SparseTensor
name
:[可选] 操作的名称
返回值
张量
input
的维度,是一个
int32
类型的张量
实例
输入:
t = tf.constant([[[1,1,1],[2,2,2]],[[3,3,3],[4,4,4]]])
tf.rank(t)
输出:
<tf.Tensor: shape=(), dtype=int32, numpy=3>
函数实现
@tf_export("rank")
@dispatch.add_dispatch_support
def rank(input, name=None):#pylint: disable=redefined-builtin"""Returns the rank of a tensor.
See also `tf.shape`.
Returns a 0-D `int32` `Tensor` representing the rank of `input`.
For example:**Note**: The rank of a tensor is not the same as the rank of a matrix. The
rank of a tensor is the number of indices required to uniquely select each
element of the tensor. Rank is also known as "order","degree", or "ndims."
Args:
input: A `Tensor` or `SparseTensor`.
name: A name for the operation(optional).
Returns:
A `Tensor` of type `int32`.
@compatibility(numpy)
Equivalent to np.ndim
@end_compatibility
"""
returnrank_internal(input, name, optimize=True)
本文转载自: https://blog.csdn.net/hy592070616/article/details/129267285
版权归原作者 von Neumann 所有, 如有侵权,请联系我们删除。
版权归原作者 von Neumann 所有, 如有侵权,请联系我们删除。