0


深入浅出TensorFlow2函数——tf.rank

分类目录:《深入浅出TensorFlow2函数》总目录


语法

  1. tf.rank(input, name=None)

参数

  • inputtf.Tensortf.SparseTensor
  • name:[可选] 操作的名称

返回值

张量

  1. input

的维度,是一个

  1. int32

类型的张量

实例

输入:

  1. t = tf.constant([[[1,1,1],[2,2,2]],[[3,3,3],[4,4,4]]])
  2. tf.rank(t)

输出:

  1. <tf.Tensor: shape=(), dtype=int32, numpy=3>

函数实现

  1. @tf_export("rank")
  2. @dispatch.add_dispatch_support
  3. def rank(input, name=None):#pylint: disable=redefined-builtin"""Returns the rank of a tensor.
  4. See also `tf.shape`.
  5. Returns a 0-D `int32` `Tensor` representing the rank of `input`.
  6. For example:**Note**: The rank of a tensor is not the same as the rank of a matrix. The
  7. rank of a tensor is the number of indices required to uniquely select each
  8. element of the tensor. Rank is also known as "order","degree", or "ndims."
  9. Args:
  10. input: A `Tensor` or `SparseTensor`.
  11. name: A name for the operation(optional).
  12. Returns:
  13. A `Tensor` of type `int32`.
  14. @compatibility(numpy)
  15. Equivalent to np.ndim
  16. @end_compatibility
  17. """
  18. returnrank_internal(input, name, optimize=True)

本文转载自: https://blog.csdn.net/hy592070616/article/details/129267285
版权归原作者 von Neumann 所有, 如有侵权,请联系我们删除。

“深入浅出TensorFlow2函数——tf.rank”的评论:

还没有评论