0


python 波士顿房价预测

数据集地址:Index of /ml/machine-learning-databases/housing (uci.edu)

数据集中共有506条样本数据,每条样本包含了13个影响房价的特征。

数据集格式

0.00632  18.00   2.310  0  0.5380  6.5750  65.20  4.0900   1  296.0  15.30 396.90   4.98  24.00
0.02731   0.00   7.070  0  0.4690  6.4210  78.90  4.9671   2  242.0  17.80 396.90   9.14  21.60
0.02729   0.00   7.070  0  0.4690  7.1850  61.10  4.9671   2  242.0  17.80 392.83   4.03  34.70
0.03237   0.00   2.180  0  0.4580  6.9980  45.80  6.0622   3  222.0  18.70 394.63   2.94  33.40
0.06905   0.00   2.180  0  0.4580  7.1470  54.20  6.0622   3  222.0  18.70 396.90   5.33  36.20
0.02985   0.00   2.180  0  0.4580  6.4300  58.70  6.0622   3  222.0  18.70 394.12   5.21  28.70
0.08829  12.50   7.870  0  0.5240  6.0120  66.60  5.5605   5  311.0  15.20 395.60  12.43  22.90
0.14455  12.50   7.870  0  0.5240  6.1720  96.10  5.9505   5  311.0  15.20 396.90  19.15  27.10
0.21124  12.50   7.870  0  0.5240  5.6310 100.00  6.0821   5  311.0  15.20 386.63  29.93  16.50

数据读取

np.fromfile() 读取数据没有数据类型和数据的形状。所以这里使用了data.reshape()重新变换成原始的形状。

# 导入需要用到的package
import numpy as np
import json
# 读入训练数据
datafile = 'housing.data'
data = np.fromfile(datafile, sep=' ')

print(data.shape)

# 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格
feature_names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']
feature_num = len(feature_names)

# 将原始数据进行reshape, 变为[N, 14]这样的形状
data = data.reshape([data.shape[0] // feature_num, feature_num])
print(data.shape)
# 输出(506, 14)

# 查看数据
X = data[0]
print(X.shape)
print(X)

(7084,)
(506, 14)
(14,)
[6.320e-03 1.800e+01 2.310e+00 0.000e+00 5.380e-01 6.575e+00 6.520e+01
4.090e+00 1.000e+00 2.960e+02 1.530e+01 3.969e+02 4.980e+00 2.400e+01]

划分数据集

在机器学习中,数据集通常划分为训练集和测试集,训练集用于训练,测试集用来评估模型的性能。两者的比例大于是8:1

# 导入需要用到的package
import numpy as np
import json
# 读入训练数据
datafile = 'housing.data'
data = np.fromfile(datafile, sep=' ')

print(data.shape)

# 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格
feature_names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']
feature_num = len(feature_names)

# 将原始数据进行reshape, 变为[N, 14]这样的形状
data = data.reshape([data.shape[0] // feature_num, feature_num])
print(data.shape)
# 输出(506, 14)

# 查看数据
X = data[0]
print(X.shape)
print(X)

ratio = 0.8
offset = int(data.shape[0] * ratio)
train_data = data[:offset]
test_data = data[offset:]
print('训练集的大小',train_data.shape)
print('测试集的大小',test_data.shape)

(7084,)
(506, 14)
(14,)
[6.320e-03 1.800e+01 2.310e+00 0.000e+00 5.380e-01 6.575e+00 6.520e+01
4.090e+00 1.000e+00 2.960e+02 1.530e+01 3.969e+02 4.980e+00 2.400e+01]
训练集的大小 (404, 14)
测试集的大小 (102, 14)

数据归一化

# 导入需要用到的package
import numpy as np
import json
# 读入训练数据
datafile = 'housing.data'
data = np.fromfile(datafile, sep=' ')

print(data.shape)

# 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格
feature_names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']
feature_num = len(feature_names)

# 将原始数据进行reshape, 变为[N, 14]这样的形状
data = data.reshape([data.shape[0] // feature_num, feature_num])
print(data.shape)
# 输出(506, 14)

# 查看数据
X = data[0]
print(X.shape)
print(X)

ratio = 0.8
offset = int(data.shape[0] * ratio)
train_data = data[:offset]
test_data = data[offset:]
print('训练集的大小',train_data.shape)
print('测试集的大小',test_data.shape)
print('归一化前的数据',train_data[0])
# 计算train数据集的最大值、最小值和平均值
maxinums, mininums, avgs = train_data.max(axis=0), train_data.min(axis=0), train_data.sum(axis=0) / train_data.shape[0]

# 对数据进行归一化处理
for i in range(feature_num):
    # print(maxinums[i], mininums[i], avgs[i])
    train_data[:, i] = (train_data[:, i] - avgs[i]) / (maxinums[i] - mininums[i])
print('归一化后的数据',train_data[0])

(7084,)
(506, 14)
(14,)
[6.320e-03 1.800e+01 2.310e+00 0.000e+00 5.380e-01 6.575e+00 6.520e+01
4.090e+00 1.000e+00 2.960e+02 1.530e+01 3.969e+02 4.980e+00 2.400e+01]
训练集的大小 (404, 14)
测试集的大小 (102, 14)
归一化前的数据 [6.320e-03 1.800e+01 2.310e+00 0.000e+00 5.380e-01 6.575e+00 6.520e+01
4.090e+00 1.000e+00 2.960e+02 1.530e+01 3.969e+02 4.980e+00 2.400e+01]
归一化后的数据 [-0.02146321 0.03767327 -0.28552309 -0.08663366 0.01289726 0.04634817
0.00795597 -0.00765794 -0.25172191 -0.11881188 -0.29002528 0.0519112
-0.17590923 -0.00390539]

模型

import numpy as np
class NetWork(object):
    def __init__(self, num_of_weights):
        # 随机产生w的初始值
        # 为了保持程序每次运行结果的一致性,此处设置了固定的随机数种子
        np.random.seed(0)
        self.w = np.random.randn(num_of_weights, 1)
        self.b = 0

    def forward(self, x):
        z = np.dot(x, self.w) + self.b

        return z

    def loss(self, z, y):
        error = z - y
        cost = error * error
        cost = np.mean(cost)

        return cost

    def gradient(self, x, y):
        z = self.forward(x)
        gradient_w = (z - y) * x
        gradient_w = np.mean(gradient_w, axis=0)  # axis=0表示把每一行做相加然后再除以总的行数
        gradient_w = gradient_w[:, np.newaxis]
        gradient_b = (z - y)
        gradient_b = np.mean(gradient_b)
        # 此处b是一个数值,所以可以直接用np.mean得到一个标量(scalar)
        return gradient_w, gradient_b

    def update(self, gradient_w, gradient_b, eta=0.01):    # eta代表学习率,是控制每次参数值变动的大小,即移动步长,又称为学习率
        self.w = self.w - eta * gradient_w                 # 相减: 参数向梯度的反方向移动
        self.b = self.b - eta * gradient_b

    def train(self, x, y, iterations=1000, eta=0.01):
        losses = []
        for i in range(iterations):
            z = self.forward(x)     # 前向计算
            L = self.loss(z, y)        # 求误差
            gradient_w, gradient_b = self.gradient(x, y)    # 求梯度
            self.update(gradient_w, gradient_b, eta)        # 更新参数
            losses.append(L)
            if (i + 1) % 10 == 0:
                print('iter {}, loss {}'.format(i, L))
        return losses

if __name__=="__main__":
    #定义模型的输入
    input=np.random.randn(1000,13)  #表示有4个样本,每个样本有13个特征
    gt_output=np.random.randn(1000,1) ##真实的标签,后续进行损失计算
    #定义模型
    model=NetWork(13)
    print('模型的初始参数',model.w,model.b)
    for i in range(100):
        #模型的前线传播得到输出
        output=model.forward(input)
        #计算模型的损失
        loss=model.loss(output,gt_output)
        # print(loss)
        #求梯度
        w,b=model.gradient(input,output)
        print('第{}epoch参数'.format(i),model.w,model.b)
        #模型的更新
        model.update(w,b)

完整代码

import numpy as np
from matplotlib import pyplot as plt

def load_data():
    # 从文件导入数据
    datafile = 'housing.data'
    data = np.fromfile(datafile, sep=' ')
    print(data.shape)
    # 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数
    feature_names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']
    feature_num = len(feature_names)

    # 将原始数据进行reshape, 变为[N, 14]这样的形状
    data = data.reshape([data.shape[0] // feature_num, feature_num])
    print(data.shape)

    # 将原数据集拆分成训练集和测试集
    # 这里使用80%的数据做训练,20%的数据做测试
    # 测试集和训练集必须是没有交集的
    ratio = 0.8
    offset = int(data.shape[0] * ratio)
    data_slice = data[:offset]

    # 计算train数据集的最大值、最小值和平均值
    maxinums, mininums, avgs = data_slice.max(axis=0), data_slice.min(axis=0), data_slice.sum(axis=0) / data_slice.shape[0]

    # 对数据进行归一化处理
    for i in range(feature_num):
        # print(maxinums[i], mininums[i], avgs[i])
        data[:, i] = (data[:, i] - avgs[i]) / (maxinums[i] - mininums[i])

    # 训练集和测试集的划分比例
    # ratio = 0.8
    train_data = data[:offset]
    test_data = data[offset:]

    return train_data, test_data

class NetWork(object):
    def __init__(self, num_of_weights):
        # 随机产生w的初始值
        # 为了保持程序每次运行结果的一致性,此处设置了固定的随机数种子
        np.random.seed(0)
        self.w = np.random.randn(num_of_weights, 1)
        self.b = 0

    def forward(self, x):
        z = np.dot(x, self.w) + self.b

        return z

    def loss(self, z, y):
        error = z - y
        cost = error * error
        cost = np.mean(cost)

        return cost

    def gradient(self, x, y):
        z = self.forward(x)
        gradient_w = (z - y) * x
        gradient_w = np.mean(gradient_w, axis=0)  # axis=0表示把每一行做相加然后再除以总的行数
        gradient_w = gradient_w[:, np.newaxis]
        gradient_b = (z - y)
        gradient_b = np.mean(gradient_b)
        # 此处b是一个数值,所以可以直接用np.mean得到一个标量(scalar)
        return gradient_w, gradient_b

    def update(self, gradient_w, gradient_b, eta=0.01):    # eta代表学习率,是控制每次参数值变动的大小,即移动步长,又称为学习率
        self.w = self.w - eta * gradient_w                 # 相减: 参数向梯度的反方向移动
        self.b = self.b - eta * gradient_b

    def train(self, x, y, iterations=1000, eta=0.01):
        losses = []
        for i in range(iterations):
            # 四步法
            z = self.forward(x)
            L = self.loss(z, y)
            gradient_w, gradient_b = self.gradient(x, y)
            self.update(gradient_w, gradient_b, eta)
            losses.append(L)
            if (i + 1) % 10 == 0:
                print('iter {}, loss {}'.format(i, L))
        return losses

# 获取数据
train_data, test_data = load_data()
print(train_data.shape)
x = train_data[:, :-1]
y = train_data[:, -1:]

# 创建网络
net = NetWork(13)
num_iterations = 2000
# 启动训练
losses = net.train(x, y, iterations=num_iterations, eta=0.01)

# 画出损失函数的变化趋势
plot_x = np.arange(num_iterations)
plot_y = np.array(losses)
plt.plot(plot_x, plot_y)
plt.show()

参考文献:

波士顿房价预测——机器学习入门级案例_心无旁骛~的博客-CSDN博客

标签: 人工智能

本文转载自: https://blog.csdn.net/qq_40107571/article/details/128667800
版权归原作者 南妮儿 所有, 如有侵权,请联系我们删除。

“python 波士顿房价预测”的评论:

还没有评论