0


人工智能深度学习100种网络模型,精心整理,全网最全,PyTorch框架逐一搭建

大家好,我是微学AI,今天给大家介绍一下人工智能深度学习100种网络模型,这些模型可以用PyTorch深度学习框架搭建。模型按照个人学习顺序进行排序:
在这里插入图片描述

深度学习模型

  1. ANN (Artificial Neural Network) - 人工神经网络:基本的神经网络结构,包括输入层、隐藏层和输出层。 学习点击地址
  2. CNN (Convolutional Neural Network) - 卷积神经网络:主要用于图像识别和处理的基础神经网络结构。 学习点击地址
  3. RNN (Recurrent Neural Network) - 循环神经网络:用于处理序列数据的神经网络结构。 学习点击地址
  4. LSTM (Long Short-Term Memory) - 长短时记忆网络:一种特殊的RNN,用于解决长序列中的梯度消失问题。 学习点击地址
  5. GRU (Gated Recurrent Unit) - 门控循环单元:一种简化版的LSTM,用于处理序列数据。 学习点击地址
  6. BiLSTM (Bidirectional LSTM) - 双向长短时记忆网络:同时考虑序列的正向和反向信息的LSTM。 学习点击地址
  7. BiGRU (Bidirectional GRU) - 双向门控循环单元:同时考虑序列的正向和反向信息的GRU。 学习点击地址
  8. Transformer - Transformer模型:一种基于自注意力机制的神经网络结构,用于处理序列数据。 学习点击地址
  9. BERT (Bidirectional Encoder Representations from Transformers) - 双向Transformers编码器模型:一种基于Transformer的预训练模型,用于自然语言处理任务。 学习点击地址
  10. ELMo (Embeddings from Language Models) - 语言模型嵌入:一种基于双向LSTM的预训练模型,用于自然语言处理任务。 学习点击地址
  11. RoBERTa (Robustly Optimized BERT Pretraining Approach) - 稳健优化的BERT预训练方法:一种改进的BERT预训练模型。
  12. T5 (Text-to-Text Transfer Transformer) - 文本到文本传输变压器:一种基于Transformer的预训练模型,用于自然语言处理任务。 学习点击地址
  13. GPT (Generative Pre-trained Transformer) - 生成预训练Transformer:一种基于Transformer的生成式预训练模型,用于自然语言处理任务。
  14. GPT-2 (Generative Pre-trained Transformer 2) - 生成预训练Transformer2:一种基于Transformer的生成式预训练模型,用于自然语言处理任务。
  15. GPT-3 (Generative Pre-trained Transformer 3) - 生成预训练Transformer3:一种基于Transformer的生成式预训练模型,用于自然语言处理任务。
  16. LeNet (LeNet-5) - LeNet-5:一种早期的卷积神经网络,用于手写数字识别。
  17. AlexNet - AlexNet:一种深度卷积神经网络,用于图像识别,赢得了2012年的ImageNet竞赛。
  18. ResNet (Residual Network) - 残差网络:一种具有残差连接的深度卷积神经网络,用于图像识别。 学习点击地址
  19. VGG (Visual Geometry Group) - 视觉几何组:一种深度卷积神经网络,用于图像识别。
  20. Inception - Inception网络:一种具有多尺度卷积的深度卷积神经网络,用于图像识别。
  21. MobileNet - 移动网络:一种轻量级的卷积神经网络,用于移动设备上的图像识别。
  22. DenseNet (Densely Connected Convolutional Network) - 密集连接卷积网络:一种具有密集连接的深度卷积神经网络,用于图像识别。
  23. U-Net - U型网络:一种用于图像分割的卷积神经网络。 学习点击地址
  24. GAN (Generative Adversarial Network) - 生成对抗网络:一种生成式模型,由生成器和判别器组成,用于生成新的数据样本。
  25. DCGAN (Deep Convolutional Generative Adversarial Network) - 深度卷积生成对抗网络:一种基于卷积神经网络的GAN。 学习点击地址
  26. WGAN (Wasserstein Generative Adversarial Network) - 瓦asserstein生成对抗网络:一种改进的GAN,使用Wasserstein距离作为损失函数。
  27. Pix2Pix - Pix2Pix网络:一种用于图像到图像转换的条件生成对抗网络。
  28. CycleGAN - CycleGAN网络:一种用于无监督图像到图像转换的生成对抗网络。
  29. StyleGAN (Style-Based Generative Adversarial Network) - 基于样式的生成对抗网络:一种用于生成高质量图像的GAN。
  30. CapsNet (Capsule Network) - 胶囊网络:一种用于图像识别的神经网络结构,包含胶囊层。
  31. SNN (Spiking Neural Network) - 脉冲神经网络:一种模拟生物神经元动力学的神经网络结构。 学习点击地址
  32. RBM (Restricted Boltzmann Machine) - 受限玻尔兹曼机:一种生成式模型,用于特征学习和降维。 学习点击地址
  33. DBN (Deep Belief Network) - 深度信念网络:一种基于RBM的深度生成式模型。
  34. Autoencoder - 自编码器:一种用于特征学习和降维的神经网络结构。
  35. VAE (Variational Autoencoder) - 变分自编码器:一种生成式自编码器,用于生成新的数据样本。
  36. Seq2Seq (Sequence-to-Sequence) - 序列到序列模型:一种用于序列到序列转换的神经网络结构,包括编码器和解码器。
  37. Attention - 注意力机制:一种用于加权序列中不同部分的神经网络结构。
  38. NMT (Neural Machine Translation) - 神经机器翻译:一种基于Seq2Seq和注意力机制的神经网络结构,用于机器翻译。
  39. ALBERT (A Lite BERT) - 轻量级BERT:一种轻量级的BERT预训练模型。
  40. XLM (Cross-lingual Language Model) - 跨语言语言模型:一种用于多语言自然语言处理任务的预训练模型。
  41. XLM-R (XLM-RoBERTa) - XLM-RoBERTa:一种基于RoBERTa的跨语言预训练模型。
  42. DeBERTa (Decoding-enhanced BERT with Disentangled Attention) - 解码增强的BERT与解耦注意力:一种改进的BERT预训练模型,具有解耦注意力机制。
  43. ELECTRA (Efficiently Learning an Encoder that Classifies Token Replacements Accurately) - 高效学习精确分类令牌替换的编码器:一种基于生成对抗网络的预训练模型。
  44. FastText - FastText:一种用于文本分类和词嵌入的神经网络模型。
  45. Word2Vec - Word2Vec:一种用于词嵌入的神经网络模型。
  46. GloVe (Global Vectors for Word Representation) - 全局词向量表示:一种用于词嵌入的神经网络模型。
  47. Siamese Network - 孪生网络:一种用于度量学习和相似性比较的神经网络结构。 学习点击地址
  48. Triplet Network - 三元组网络:一种用于度量学习和相似性比较的神经网络结构,包括三个相互关联的子网络。
  49. YOLO (You Only Look Once) - 一次性查看:一种实时目标检测的神经网络模型。
  50. SSD (Single Shot MultiBox Detector) - 单次多框检测器:一种实时目标检测的神经网络模型。
  51. RetinaNet - RetinaNet:一种用于目标检测的神经网络模型,具有特征金字塔网络和锚框。
  52. Mask R-CNN - Mask R-CNN:一种用于实例分割的神经网络模型,基于Faster R-CNN。
  53. NASNet (Neural Architecture Search Network) - 神经架构搜索网络:一种通过神经架构搜索自动设计的神经网络模型。
  54. EfficientNet - EfficientNet:一种自动调整网络深度、宽度和分辨率的神经网络模型。
  55. SqueezeNet - SqueezeNet:一种轻量级的卷积神经网络,用于图像识别。
  56. ShuffleNet - ShuffleNet:一种轻量级的卷积神经网络,用于图像识别,具有通道混洗操作。
  57. MnasNet - MnasNet:一种通过神经架构搜索自动设计的轻量级卷积神经网络,用于图像识别。
  58. PNASNet (Progressive Neural Architecture Search) - 渐进式神经架构搜索:一种通过渐进式神经架构搜索自动设计的神经网络模型。
  59. RCNN (Region-based Convolutional Neural Network) - 基于区域的卷积神经网络:一种用于目标检测的神经网络模型。
  60. Fast R-CNN - Fast R-CNN:一种改进的R-CNN,用于目标检测,具有较快的训练和推理速度。
  61. Faster R-CNN - Faster R-CNN:一种改进的Fast R-CNN,用于目标检测,具有区域提议网络。
  62. R-FCN (Region-based Fully Convolutional Network) - 基于区域的全卷积网络:一种用于目标检测的神经网络模型,基于全卷积网络。
  63. FPN (Feature Pyramid Network) - 特征金字塔网络:一种用于目标检测的神经网络模型,具有多尺度特征金字塔。
  64. HRNet (High-Resolution Network) - 高分辨率网络:一种用于图像识别和语义分割的神经网络模型,保持高分辨率特征图。
  65. DeepLab - DeepLab:一种用于语义分割的神经网络模型,具有空洞卷积和条件随机场。
  66. PspNet (Pyramid Scene Parsing Network) - 金字塔场景解析网络:一种用于语义分割的神经网络模型,具有金字塔池化模块。
  67. NIN (Network in Network) - 网络中的网络:一种卷积神经网络,用于图像识别,具有多层感知机卷积层。
  68. SRGAN (Super-Resolution Generative Adversarial Network) - 超分辨率生成对抗网络:一种用于图像超分辨率的生成对抗网络。
  69. Ladder Network - 梯形网络:一种半监督学习的神经网络模型,具有多层编码器和解码器。
  70. CTC (Connectionist Temporal Classification) - 连接主义时序分类:一种用于序列到序列转换的神经网络损失函数,用于语音识别等任务。
  71. CPM (Convolutional Pose Machines) - 卷积姿态机:一种用于人体姿态估计的卷积神经网络模型。
  72. OpenPose - OpenPose:一种用于实时多人关键点检测的神经网络模型。
  73. WaveNet - WaveNet:一种用于生成原始波形音频的深度神经网络模型。
  74. Tacotron - Tacotron:一种用于文本到语音合成的神经网络模型,基于Seq2Seq和注意力机制。
  75. Transformer-XL (Transformer with extra-long context) - 变压器扩展长上下文:一种改进的Transformer,用于处理长序列数据。
  76. BigGAN (Big Generative Adversarial Network) - 大型生成对抗网络:一种用于生成高质量图像的大型生成对抗网络。
  77. ProGAN (Progressive Growing of GANs) - GAN的渐进式增长:一种通过逐渐增加生成器和判别器的分辨率来训练GAN的方法。
  78. SPADE (Spatially-Adaptive Normalization) - 空间自适应归一化:一种用于图像到图像转换的生成对抗网络,具有空间自适应归一化层。
  79. StarGAN - StarGAN:一种用于多域图像到图像转换的生成对抗网络。
  80. Swin Transformer - Swin Transformer:一种基于滑动窗口的Transformer,用于计算机视觉任务。
  81. ViT (Vision Transformer) - 视觉变压器:一种将图像分割成小块并将其视为序列的Transformer,用于图像识别。
  82. DeiT (Data-efficient Image Transformer) - 数据高效图像变压器:一种基于Vision Transformer的数据高效图像识别模型。
  83. Stable Diffusion - 稳定扩散网络模型,用于图像处理,文本生成图像的应用。
  84. Reformer - 改革者:一种改进的Transformer,用于处理长序列数据,具有局部敏感哈希和可逆残差层。
  85. Performer - 表演者:一种改进的Transformer,用于处理长序列数据,具有快速注意力机制。
  86. Linformer - 线性变压器:一种改进的Transformer,用于处理长序列数据,具有线性复杂度的自注意力机制。
  87. Longformer - 长变压器:一种改进的Transformer,用于处理长序列数据,具有稀疏自注意力机制。
  88. Conformer - 一致者:一种用于自动语音识别的神经网络模型,结合了Transformer和卷积神经网络。
  89. NeRF (Neural Radiance Fields) - 神经辐射场:一种用于三维场景重建的神经网络模型。
  90. DALL-E - DALL-E:一种基于Transformer的生成式模型,用于从文本描述生成图像。
  91. CLIP (Contrastive Language-Image Pretraining) - 对比性语言-图像预训练:一种同时学习图像和文本表示的预训练模型。
  92. DETR (DEtection TRansformer) - 检测变压器:一种基于Transformer的端到端目标检测神经网络模型。
  93. T2T-ViT (Tokens-to-Token Vision Transformer) - 令牌到令牌视觉变压器:一种基于令牌到令牌的视觉变压器,用于图像识别。
  94. OmniNet - OmniNet:一种用于多任务学习的神经网络模型,具有共享特征提取器和任务特定的分支。
  95. PointNet - PointNet:一种用于处理点云数据的神经网络模型。
  96. GCN (Graph Convolutional Network)- 图卷积神经网络:适用于处理图数据,尤其是基于图结构的数据分析和机器学习任务。
  97. SE-Net (Squeeze-and-Excitation Network) -基于通道注意力机制的卷积神经网络:通过学习每个通道间的关系来提高模型泛化能力。
  98. TSM (Temporal Shift Module) -时间序列模块:用于处理视频中的时间序列信息,可以在不增加计算量的情况下提高视频分类的准确率。
  99. STT (Speech-to-Text) -语音到文本模型:将语音信号转换成对应的文字。
  100. TTS (Text-to-Speech) -文本到语音模型:将文字信息转换成对应的语音信号。

以上模型涵盖了计算机视觉、自然语言处理、语音识别、生成模型等多个领域,可以根据实际需求选择合适的模型进行搭建和训练。


本文转载自: https://blog.csdn.net/weixin_42878111/article/details/131017355
版权归原作者 微学AI 所有, 如有侵权,请联系我们删除。

“人工智能深度学习100种网络模型,精心整理,全网最全,PyTorch框架逐一搭建”的评论:

还没有评论