0


人工智能(pytorch)搭建模型12-pytorch搭建BiGRU模型,利用正态分布数据训练该模型

大家好,我是微学AI,今天给大家介绍一下人工智能(pytorch)搭建模型12-pytorch搭建BiGRU模型,利用正态分布数据训练该模型。本文将介绍一种基于PyTorch的BiGRU模型应用项目。我们将首先解释BiGRU模型的原理,然后使用PyTorch搭建模型,并提供模型代码和数据样例。接下来,我们将加载数据到模型中进行训练,打印损失值与准确率,并在训练完成后进行测试。最后,我们将提供完整的文章目录结构和全套实现代码。

目录

  1. BiGRU模型原理
  2. 使用PyTorch搭建BiGRU模型
  3. 数据样例
  4. 模型训练
  5. 模型测试
  6. 完整代码

1. BiGRU模型原理

BiGRU(双向门控循环单元)是一种改进的循环神经网络(RNN)结构,它由两个独立的GRU层组成,一个沿正向处理序列,另一个沿反向处理序列。这种双向结构使得BiGRU能够捕捉到序列中的长距离依赖关系,从而提高模型的性能。
在这里插入图片描述

GRU(门控循环单元)是一种RNN变体,它通过引入更新门和重置门来解决传统RNN中的梯度消失问题。更新门负责确定何时更新隐藏状态,而重置门负责确定何时允许过去的信息影响当前隐藏状态。

BiGRU模型的数学原理可以用以下公式表示:

首先,对于一个输入序列

     X 
    
   
     = 
    
    
     
     
       x 
      
     
       1 
      
     
     
     
       x 
      
     
       2 
      
     
    
      , 
     
    
      . 
     
    
      . 
     
    
      . 
     
    
      , 
     
     
     
       x 
      
     
       T 
      
     
    
   
  
    X = {x_1 x_2, ..., x_T} 
   
  
X=x1​x2​,...,xT​,BiGRU模型的前向计算可以表示为:


  
   
    
     
      
      
        h 
       
      
        t 
       
      
     
       → 
      
     
    
      = 
     
    
      GRU 
     
    
      ( 
     
     
      
      
        h 
       
       
       
         t 
        
       
         − 
        
       
         1 
        
       
      
     
       → 
      
     
    
      , 
     
     
     
       x 
      
     
       t 
      
     
    
      ) 
     
    
   
     \overrightarrow{h_t} = \text{GRU}(\overrightarrow{h_{t-1}}, x_t) 
    
   
 ht​​=GRU(ht−1​​,xt​)


  
   
    
     
      
      
        h 
       
      
        t 
       
      
     
       ← 
      
     
    
      = 
     
    
      GRU 
     
    
      ( 
     
     
      
      
        h 
       
       
       
         t 
        
       
         + 
        
       
         1 
        
       
      
     
       ← 
      
     
    
      , 
     
     
     
       x 
      
     
       t 
      
     
    
      ) 
     
    
   
     \overleftarrow{h_t} = \text{GRU}(\overleftarrow{h_{t+1}}, x_t) 
    
   
 ht​​=GRU(ht+1​​,xt​)

其中,

       h 
      
     
       t 
      
     
    
      → 
     
    
   
  
    \overrightarrow{h_t} 
   
  
ht​​ 和  
 
  
   
    
     
     
       h 
      
     
       t 
      
     
    
      ← 
     
    
   
  
    \overleftarrow{h_t} 
   
  
ht​​ 分别表示从左到右和从右到左的隐藏状态, 
 
  
   
   
     GRU 
    
   
  
    \text{GRU} 
   
  
GRU 表示GRU单元, 
 
  
   
    
    
      x 
     
    
      t 
     
    
   
  
    x_t 
   
  
xt​ 表示输入序列中的第  
 
  
   
   
     t 
    
   
  
    t 
   
  
t 个元素。

然后,将两个方向的隐藏状态拼接在一起,得到最终的隐藏状态

      h 
     
    
      t 
     
    
   
  
    h_t 
   
  
ht​:


  
   
    
     
     
       h 
      
     
       t 
      
     
    
      = 
     
    
      [ 
     
     
      
      
        h 
       
      
        t 
       
      
     
       → 
      
     
    
      ; 
     
     
      
      
        h 
       
      
        t 
       
      
     
       ← 
      
     
    
      ] 
     
    
   
     h_t = [\overrightarrow{h_t}; \overleftarrow{h_t}] 
    
   
 ht​=[ht​​;ht​​]

其中,

     [ 
    
   
     ⋅ 
    
   
     ; 
    
   
     ⋅ 
    
   
     ] 
    
   
  
    [\cdot;\cdot] 
   
  
[⋅;⋅] 表示向量的拼接操作。

最后,将隐藏状态

      h 
     
    
      t 
     
    
   
  
    h_t 
   
  
ht​ 传递给一个全连接层,得到输出  
 
  
   
    
    
      y 
     
    
      t 
     
    
   
  
    y_t 
   
  
yt​:


  
   
    
     
     
       y 
      
     
       t 
      
     
    
      = 
     
    
      softmax 
     
    
      ( 
     
    
      W 
     
     
     
       h 
      
     
       t 
      
     
    
      + 
     
    
      b 
     
    
      ) 
     
    
   
     y_t = \text{softmax}(W h_t + b) 
    
   
 yt​=softmax(Wht​+b)

其中,

     W 
    
   
  
    W 
   
  
W 和  
 
  
   
   
     b 
    
   
  
    b 
   
  
b 分别表示全连接层的权重和偏置, 
 
  
   
   
     softmax 
    
   
  
    \text{softmax} 
   
  
softmax 表示 
 
  
   
   
     softmax 
    
   
  
    \text{softmax} 
   
  
softmax激活函数。

2. 使用PyTorch搭建BiGRU模型

首先,我们需要导入所需的库:

import torch
import torch.nn as nn

接下来,我们定义BiGRU模型类:

classBiGRU(nn.Module):def__init__(self, input_size, hidden_size, num_layers, num_classes):super(BiGRU, self).__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.gru = nn.GRU(input_size, hidden_size, num_layers, batch_first=True, bidirectional=True)
        self.fc = nn.Linear(hidden_size *2, num_classes)defforward(self, x):# 初始化隐藏状态
        h0 = torch.zeros(self.num_layers *2, x.size(0), self.hidden_size).to(device)# 双向GRU
        out, _ = self.gru(x, h0)
        out = out[:,-1,:]# 全连接层
        out = self.fc(out)return out

3. 数据样例

为了简化问题,我们将使用一个简单的人造数据集。数据集包含10个样本,每个样本有8个时间步长,每个时间步长有一个特征。标签是一个二分类问题。

# 生成数据样例import numpy as np

# 均值为1的正态分布随机数
data_0 = np.random.randn(50,20,1)+1# 均值为-1的正态分布随机数
data_1 = np.random.randn(50,20,1)-1# 合并为总数据集
data = np.concatenate([data_0, data_1], axis=0)# 将 labels 修改为对应大小的数组
labels = np.concatenate([np.zeros((50,1)), np.ones((50,1))], axis=0)

4. 模型训练

首先,我们需要将数据转换为PyTorch张量,并将其分为训练集和验证集。

from sklearn.model_selection import train_test_split

X_train, X_val, y_train, y_val = train_test_split(data, labels, test_size=0.2, random_state=42)

X_train = torch.tensor(X_train, dtype=torch.float32)
y_train = torch.tensor(y_train, dtype=torch.long)
X_val = torch.tensor(X_val, dtype=torch.float32)
y_val = torch.tensor(y_val, dtype=torch.long)

接下来,我们定义训练和验证函数:

deftrain(model, device, X_train, y_train, optimizer, criterion):
    model.train()
    optimizer.zero_grad()
    output = model(X_train.to(device))
    loss = criterion(output, y_train.squeeze().to(device))
    loss.backward()
    optimizer.step()return loss.item()defvalidate(model, device, X_val, y_val, criterion):
    model.eval()with torch.no_grad():
        output = model(X_val.to(device))
        loss = criterion(output, y_val.squeeze().to(device))return loss.item()

现在,我们可以开始训练模型:

device = torch.device("cuda"if torch.cuda.is_available()else"cpu")
input_size =1
hidden_size =32
num_layers =1
num_classes =2
num_epochs =10
learning_rate =0.01

model = BiGRU(input_size, hidden_size, num_layers, num_classes).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)for epoch inrange(num_epochs):
    train_loss = train(model, device, X_train, y_train, optimizer, criterion)
    val_loss = validate(model, device, X_val, y_val, criterion)print(f"Epoch [{epoch +1}/{num_epochs}], Train Loss: {train_loss:.4f}, Validation Loss: {val_loss:.4f}")

5. 模型测试

在训练完成后,我们可以使用测试数据集评估模型的性能。这里,我们将使用训练过程中的验证数据作为测试数据。

deftest(model, device, X_test, y_test):
    model.eval()with torch.no_grad():
        output = model(X_test.to(device))
        _, predicted = torch.max(output.data,1)
        correct =(predicted == y_test.squeeze().to(device)).sum().item()
        accuracy = correct / y_test.size(0)return accuracy

test_accuracy = test(model, device, X_val, y_val)print(f"Test Accuracy: {test_accuracy *100:.2f}%")

6. 完整代码

以下是本文中提到的完整代码:

# 导入库import torch
import torch.nn as nn
import numpy as np
from sklearn.model_selection import train_test_split

# 定义BiGRU模型classBiGRU(nn.Module):def__init__(self, input_size, hidden_size, num_layers, num_classes):super(BiGRU, self).__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.gru = nn.GRU(input_size, hidden_size, num_layers, batch_first=True, bidirectional=True)
        self.fc = nn.Linear(hidden_size *2, num_classes)defforward(self, x):
        h0 = torch.zeros(self.num_layers *2, x.size(0), self.hidden_size).to(device)
        out, _ = self.gru(x, h0)
        out = out[:,-1,:]
        out = self.fc(out)return out

# 生成数据样例# 均值为1的正态分布随机数
data_0 = np.random.randn(50,20,1)+1# 均值为-1的正态分布随机数
data_1 = np.random.randn(50,20,1)-1# 合并为总数据集
data = np.concatenate([data_0, data_1], axis=0)# 将 labels 修改为对应大小的数组
labels = np.concatenate([np.zeros((50,1)), np.ones((50,1))], axis=0)# 划分训练集和验证集
X_train, X_val, y_train, y_val = train_test_split(data, labels, test_size=0.2, random_state=42)
X_train = torch.tensor(X_train, dtype=torch.float32)
y_train = torch.tensor(y_train, dtype=torch.long)
X_val = torch.tensor(X_val, dtype=torch.float32)
y_val = torch.tensor(y_val, dtype=torch.long)# 定义训练和验证函数deftrain(model, device, X_train, y_train, optimizer, criterion):
    model.train()
    optimizer.zero_grad()
    output = model(X_train.to(device))
    loss = criterion(output, y_train.squeeze().to(device))
    loss.backward()
    optimizer.step()return loss.item()defvalidate(model, device, X_val, y_val, criterion):
    model.eval()with torch.no_grad():
        output = model(X_val.to(device))
        loss = criterion(output, y_val.squeeze().to(device))return loss.item()# 训练模型
device = torch.device("cuda"if torch.cuda.is_available()else"cpu")
input_size =1
hidden_size =32
num_layers =1
num_classes =2
num_epochs =10
learning_rate =0.01

model = BiGRU(input_size, hidden_size, num_layers, num_classes).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)for epoch inrange(num_epochs):
    train_loss = train(model, device, X_train, y_train, optimizer, criterion)
    val_loss = validate(model, device, X_val, y_val, criterion)print(f"Epoch [{epoch +1}/{num_epochs}], Train Loss: {train_loss:.4f}, Validation Loss: {val_loss:.4f}")# 测试模型deftest(model, device, X_test, y_test):
    model.eval()with torch.no_grad():
        output = model(X_test.to(device))
        _, predicted = torch.max(output.data,1)
        correct =(predicted == y_test.squeeze().to(device)).sum().item()
        accuracy = correct / y_test.size(0)return accuracy

test_accuracy = test(model, device, X_val, y_val)print(f"Test Accuracy: {test_accuracy *100:.2f}%")

运行结果:

Epoch [1/10], Train Loss:0.7157, Validation Loss:0.6330
Epoch [2/10], Train Loss:0.6215, Validation Loss:0.5666
Epoch [3/10], Train Loss:0.5390, Validation Loss:0.4980
Epoch [4/10], Train Loss:0.4613, Validation Loss:0.4214
Epoch [5/10], Train Loss:0.3825, Validation Loss:0.3335
Epoch [6/10], Train Loss:0.2987, Validation Loss:0.2357
Epoch [7/10], Train Loss:0.2096, Validation Loss:0.1381
Epoch [8/10], Train Loss:0.1230, Validation Loss:0.0644
Epoch [9/10], Train Loss:0.0581, Validation Loss:0.0273
Epoch [10/10], Train Loss:0.0252, Validation Loss:0.0125
Test Accuracy:100.00%

本文介绍了一个基于PyTorch的BiGRU模型应用项目的完整实现。我们详细介绍了BiGRU模型的原理,并使用PyTorch搭建了模型。我们还提供了模型代码和数据样例,并展示了如何加载数据到模型中进行训练和测试。希望能帮助大家理解和实现BiGRU模型。


本文转载自: https://blog.csdn.net/weixin_42878111/article/details/131227085
版权归原作者 微学AI 所有, 如有侵权,请联系我们删除。

“人工智能(pytorch)搭建模型12-pytorch搭建BiGRU模型,利用正态分布数据训练该模型”的评论:

还没有评论