0


十大人工智能经典算法代码python

以下是十大常见的人工智能算法在Python中的基本实现代码。请注意,这些代码仅用于演示目的,并未针对性能或效率进行优化。在实际项目中,你可能需要使用更高级的库或工具,例如TensorFlow或PyTorch,来进行这些算法的实现。

1、线性回归 (Linear Regression)

  1. from sklearn.linear_model import LinearRegression
  2. import numpy as np
  3. # 创建数据
  4. X = np.array([[1],[2],[3],[4],[5]])
  5. y = np.array([2,4,6,8,10])# 拟合模型
  6. model = LinearRegression()
  7. model.fit(X, y)# 预测 print(model.predict([[6]]))

2、逻辑回归 (Logistic Regression)

  1. from sklearn.linear_model import LogisticRegression
  2. import numpy as np
  3. # 创建数据
  4. X = np.array([[1,2],[2,3],[3,4],[4,5]])
  5. y = np.array([0,0,1,1])# 拟合模型
  6. model = LogisticRegression()
  7. model.fit(X, y)# 预测 print(model.predict([[5,6]]))

3、K近邻 (K-Nearest Neighbors)

  1. from sklearn.neighbors import KNeighborsClassifier
  2. import numpy as np
  3. # 创建数据
  4. X = np.array([[1,2],[2,3],[3,4],[4,5]])
  5. y = np.array([0,0,1,1])# 拟合模型
  6. model = KNeighborsClassifier(n_neighbors=3)
  7. model.fit(X, y)# 预测 print(model.predict([[5,6]]))

4、决策树 (Decision Tree)

  1. from sklearn.tree import DecisionTreeClassifier
  2. import numpy as np
  3. # 创建数据
  4. X = np.array([[1,2],[2,3],[3,4],[4,5]])
  5. y = np.array([0,0,1,1])# 拟合模型
  6. model = DecisionTreeClassifier()
  7. model.fit(X, y)# 预测 print(model.predict([[5,6]]))

5、朴素贝叶斯 (Naive Bayes)

  1. from sklearn.naive_bayes import GaussianNB
  2. import numpy as np
  3. # 创建数据
  4. X = np.array([[1,2],[2,3],[3,4],[4,5]])
  5. y = np.array([0,0,1,1])# 拟合模型
  6. model = GaussianNB()
  7. model.fit(X, y)# 预测 print(model.predict([[5,6]]))

6、随机森林 (Random Forest)

  1. from sklearn.ensemble import RandomForestClassifier
  2. import numpy as np
  3. # 创建数据
  4. X = np.array([[1,2],[2,3],[3,4],[4,5]])
  5. y = np.array([0,0,1,1])# 拟合模型
  6. model = RandomForestClassifier(n_estimators=100)
  7. model.fit(X, y)# 预测 print(model.predict([[5,6]]))

7、支持向量机 (Support Vector Machines)

  1. from sklearn import svm
  2. import numpy as np
  3. # 创建数据
  4. X = np.array([[1,2],[2,3],[3,4],[4,5]])
  5. y = np.array([0,0,1,1])# 拟合模型
  6. model = svm.SVC(kernel='linear')
  7. model.fit(X, y)# 预测 print(model.predict([[5,6]]))

8、梯度提升树 (Gradient Boosting Trees)

  1. from sklearn.ensemble import GradientBoostingClassifier
  2. from sklearn.datasets import make_classification
  3. from sklearn.model_selection import train_test_split
  4. from sklearn.metrics import accuracy_score
  5. # 创建模拟数据
  6. X, y = make_classification(n_samples=1000, n_features=4, n_informative=2, n_redundant=0, random_state=0, shuffle=False)# 划分训练集和测试集
  7. X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 初始化梯度提升树分类器
  8. gb_clf = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0, max_depth=1, random_state=42)# 训练模型
  9. gb_clf.fit(X_train, y_train)# 预测测试集
  10. y_pred = gb_clf.predict(X_test)# 计算准确率
  11. accuracy = accuracy_score(y_test, y_pred)print(f"Accuracy: {accuracy:.2f}")# 可以进一步查看模型的特征重要性
  12. feature_importances = gb_clf.feature_importances_
  13. print(f"Feature importances: {feature_importances}")

9、主成分分析 (Principal Component Analysis, PCA)

  1. from sklearn.decomposition import PCA
  2. import numpy as np
  3. # 创建数据
  4. X = np.array([[1,2],[3,4],[5,6],[7,8]])# 拟合模型
  5. pca = PCA(n_components=1)
  6. pca.fit(X)# 转换数据
  7. X_pca = pca.transform(X)print(X_pca)

10、聚类算法:K-Means

  1. from sklearn.cluster import KMeans
  2. import numpy as np
  3. # 创建数据
  4. X = np.array([[1,2],[1,4],[1,0],[10,2],[10,4],[10,0]])# 拟合模型
  5. kmeans = KMeans(n_clusters=2, random_state=0)
  6. kmeans.fit(X)# 预测聚类标签
  7. labels = kmeans.predict(X)print(labels)# 预测聚类中心
  8. centers = kmeans.cluster_centers_
  9. print(centers)

这些代码都是使用sklearn库的基本示例,它是一个非常流行的Python机器学习库,提供了大量的预构建算法和工具。在实际应用中,你可能需要调整参数、处理数据、评估模型性能等。此外,对于深度学习和其他更复杂的任务,你可能会使用TensorFlow、PyTorch等框架。


本文转载自: https://blog.csdn.net/longe20111104/article/details/137350026
版权归原作者 longgggggggggggggggg 所有, 如有侵权,请联系我们删除。

“十大人工智能经典算法代码python”的评论:

还没有评论