0


【NLP_事件抽取】基于条件随机场模型

数据预处理

#!/usr/bin/env python
# coding=utf-8

from string import punctuation
import re
import codecs

# 英文标点符号+中文标点符号
# 未去除空格、换行符等(正则表达式以"/s"表示)
punc = punctuation + u'.,;《》?!“”‘’@#¥%…&×()——+【】{};;●,。&~、|::'

fr = codecs.open("……\YWP_EventExtraction_CRF_Elephant\\01 Preprocessing\\20220107 test data.txt", "r", encoding='utf-8')
fw = codecs.open("……\YWP_EventExtraction_CRF_Elephant\\01 Preprocessing\\20220107 test data_result.txt", "w", encoding='utf-8')

# 利用正则表达式替换为一个空格
for line in fr:
    line = re.sub(r"[{}]+".format(punc)," ",line)
    fw.write(line+' ')

fr.close()
fw.close()


预处理后的数据示例

LTP:分词+词性标注+命名实体识别

  • 输入:即形如上述的预处理后的数据
# -*- coding: utf-8 -*-
import os
from pyltp import NamedEntityRecognizer
from pyltp import Postagger
from pyltp import Segmentor

LTP_DATA_DIR = 'D:/Software/Anaconda3/ltp_data_v3.4.0/'  # ltp模型目录的路径,根据实际情况修改
cws_model_path = os.path.join(LTP_DATA_DIR,
                              'cws.model')  # 分词模型路径,模型名称为`cws.model`
pos_model_path = os.path.join(LTP_DATA_DIR,
                              'pos.model')  # 词性标注模型路径,模型名称为`pos.model`
ner_model_path = os.path.join(LTP_DATA_DIR,
                              'ner.model')  # 命名实体识别模型路径,模型名称为`ner.model`

with open("D:\Desktop\北移象群\代码\YWP_EventExtraction_CRF_Elephant\\01 Preprocessing\\20220107 test data_result.txt", "r", encoding='utf-8') as f1:
    content = f1.read()

    # 分词
    segmentor = Segmentor()  # 初始化分词实例
    segmentor.load_with_lexicon(cws_model_path, 'dict')  # 加载分词模型,以及自定义词典
    seg_list = segmentor.segment(content)  # 分词
    seg_list = list(seg_list)  # 返回值并不是list类型,因此需要转换为list

    # LTP不能很好地处理回车,因此需要去除回车给分词带来的干扰。
    # LTP也不能很好地处理数字,可能把一串数字分成好几个单词,因此需要连接可能拆开的数字
    i = 0
    while i < len(seg_list):
        # 如果单词里包含回车,则需要分三种情况处理
        if '\n' in seg_list[i] and len(seg_list[i]) > 1:
            idx = seg_list[i].find('\n')
            # 回车在单词的开头,如\n被告人
            if idx == 0:
                remains = seg_list[i][1:]
                seg_list[i] = '\n'
                seg_list.insert(i + 1, remains)
            # 回车在单词末尾,如被告人\n
            elif idx == len(seg_list[i]) - 1:
                remains = seg_list[i][:-1]
                seg_list[i] = remains
                seg_list.insert(i + 1, '\n')
            # 回车在单词中间,如被告人\n张某某
            else:
                remains1 = seg_list[i].split('\n')[0]
                remains2 = seg_list[i].split('\n')[-1]
                seg_list[i] = remains1
                seg_list.insert(i + 1, '\n')
                seg_list.insert(i + 2, remains2)
        # 将拆开的数字连接起来
        if seg_list[i].isdigit() and seg_list[i + 1].isdigit():
            seg_list[i] = seg_list[i] + seg_list[i + 1]
            del seg_list[i + 1]

        i += 1

    # 词性标注
    postagger = Postagger()  # 初始化词性标注实例
    postagger.load(pos_model_path)  # 加载模型
    postags = postagger.postag(seg_list)  # 词性标注

    # 命名实体识别
    recognizer = NamedEntityRecognizer()  # 初始化命名实体识别实例
    recognizer.load(ner_model_path)  # 加载模型
    netags = recognizer.recognize(seg_list, postags)  # 命名实体识别

    # 写入结果
    f2 = open("……\YWP_EventExtraction_CRF_Elephant\\02 LTP (Seg, POS, NER)\\05LTP分词\\20220107 test data_LTPresult.txt", "w", encoding='utf-8')
    for word, postag, netag in zip(seg_list, postags, netags):
        if word == '\n':
            f2.write('\n')
        else:
            f2.write(word + " " + postag + " " + netag + "\n")
    f2.close()

    # 释放模型
    segmentor.release()
    postagger.release()
    recognizer.release()
  • 输出


LTP处理后的数据示例

CRF++:事件抽取

标注数据

  • train.datatest.data数据格式


train.data示例(BMES标注)

训练模型


命令行下训练CRF模型


命令行下测试CRF模型

  • 输出output.txt→用于后续事件抽取模型评估


output数据格式

展示事件元素

  • (输入:分词+词性+命名实体+事件标注)
#!/usr/bin/env python
# _*_coding:utf-8 _*_
# @Author:Zhang Shiwei + YWP
# @Date  :2019-07-21 + 2021-01-07
#通过CRF++模型,得到事件标注(类似命名实体识别)后,运行该程序

# 去除列表中重复元素,同时保持相对顺序不变
def remove_duplicate_elements(l):
    new_list = []
    for i in l:
        if i not in new_list:
            new_list.append(i)
    return new_list

# 将属于同一事件要素的词语合并

def func(file_name):
    words = []
    element_type = []
    with open(file_name, "r", encoding='utf-8') as f1:
        contents = f1.readlines()
        new_contents = []
        # 将文本转换成list,方便后续处理
        for content in contents:
            new_contents.append(content.strip("\n").split(" "))

        for index, content in enumerate(new_contents):
            if "S" in content[-1]:
                # 处理由一个单词组成的事件要素
                words.append(content[0])
                element_type.append(content[-1])

            elif "B" in content[-1]:
                # 处理由多个单词组成的事件要素
                words.append(content[0])
                element_type.append(content[-1])
                j = index + 1
                while "I" in new_contents[j][-1] or "E" in new_contents[j][-1]:
                    words[-1] = words[-1] + new_contents[j][0]
                    j += 1
                    if j == len(new_contents):
                        break
        T = []
        K = []
        D = []
        P = []
        N = []
        R = []

        for i in range(len(element_type)):
            if element_type[i][-1] == "T":
                T.append(words[i])
            elif element_type[i][-1] == "K":
                K.append(words[i])
            elif element_type[i][-1] == "D":
                D.append(words[i])
            elif element_type[i][-1] == "P":
                P.append(words[i])
            elif element_type[i][-1] == "N":
                N.append(words[i])
            elif element_type[i][-1] == "R":
                R.append(words[i])

        # 整理抽取结果
        result = dict()
        result["时间"] = remove_duplicate_elements(T)
        result["头数"] = remove_duplicate_elements(K)
        result["名称"] = remove_duplicate_elements(D)
        result["地点"] = remove_duplicate_elements(P)
        result["肇事"] = remove_duplicate_elements(N)
        result["原因"] = remove_duplicate_elements(R)

        #   打印出完整的事件要素
        for key, value in result.items():
            print(key, value)

    return result

func("…….txt")
#func("…….txt")

精度评价

  • 输入数据五列,分别为:分词 + 词性 + 命名实体识别 + 事件元素真实标注 + 事件元素实际标注,后两列用于评价事件抽取模型的精度
# -*- coding:utf-8 -*-
# @Author:Zhang Shiwei + YWP
# @Date  :2019-06-10 + 2021-01-07

with open("…….txt", "r", encoding="utf-8") as f1:
    contents = f1.read().splitlines()
    count = 0
    real_count = 0
    tp = 0
    fp = 0
    fn = 0
    tn = 0

    for i in range(len(contents)):
        if len(contents[i]) > 1:
            real_count += 1
            if contents[i].split(" ")[-2] != "O":
                if contents[i].split(" ")[-1] == contents[i].split(" ")[-2]:
                    tp += 1
                else:
                    fn += 1
            else:
                if contents[i].split(" ")[-1] != "O":
                    fp += 1
                else:
                    tn += 1
    P = tp / (tp + fp)
    R = tp / (tp + fn)
    F1 = 2 * P * R / (P + R)
    print("P=" + str(P))
    print("R=" + str(R))
    print("F1=" + str(F1))

重要参考

https://github.com/zhang17173/Event-Extractionhttps://github.com/zhang17173/Event-Extraction


本文转载自: https://blog.csdn.net/YWP_2016/article/details/122364463
版权归原作者 YWP_2016 所有, 如有侵权,请联系我们删除。

“【NLP_事件抽取】基于条件随机场模型”的评论:

还没有评论