0


YOLOv7目标检测数据集划分

1.准备VOC数据集

    将所有数据集图片放入JPEGImages文件夹中,所有的图片对应的xml文件放入Annotations中,ImageSets文件夹中创建Main文件夹,暂时Main文件夹为空。

** 文件夹结构**

VOCdevkit
 ————VOC2007
    ————Annotations  # 存放图片对应的xml文件,与JPEGImages图片一一对应
    ————ImageSets
         ————Main    # 存放train.txt和val.txt文件
    ————JPEGImages   # 存放所有图片

2.数据集划分

**在 VOCdevkit 目录下创建

split.py

,运行之后会在Main 文件夹下生成三个个txt文件:**

**

train.txt、val.txt、test.txt

**

split.py

# -*- coding: utf-8 -*-
"""
Author:smile
Date:2022/09/11 10:00
顺序:脚本A1
简介:分训练集、验证集和测试集,按照 8:1:1 的比例来分,训练集8,验证集1,测试集1
     
"""
import os
import random
import argparse

parser = argparse.ArgumentParser()
# xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
parser.add_argument('--xml_path', default='VOCdevkit/VOC2007/Annotations', type=str, help='input xml label path')
# 数据集的划分,地址选择自己数据下的ImageSets/Main
parser.add_argument('--txt_path', default='VOCdevkit/VOC2007/ImageSets/Main', type=str, help='output txt label path')
opt = parser.parse_args()

train_percent = 0.8  # 训练集所占比例
val_percent = 0.1    # 验证集所占比例
test_persent = 0.1   # 测试集所占比例

xmlfilepath = opt.xml_path
txtsavepath = opt.txt_path
total_xml = os.listdir(xmlfilepath)

if not os.path.exists(txtsavepath):
    os.makedirs(txtsavepath)

num = len(total_xml)  
list = list(range(num))

t_train = int(num * train_percent)  
t_val = int(num * val_percent)

train = random.sample(list, t_train)
num1 = len(train)
for i in range(num1):
    list.remove(train[i])

val_test = [i for i in list if not i in train]
val = random.sample(val_test, t_val)
num2 = len(val)
for i in range(num2):
    list.remove(val[i])

file_train = open(txtsavepath + '/train.txt', 'w')
file_val = open(txtsavepath + '/val.txt', 'w')
file_test = open(txtsavepath + '/test.txt', 'w')

for i in train:
    name = total_xml[i][:-4] + '\n'
    file_train.write(name)

for i in val:
    name = total_xml[i][:-4] + '\n'
    file_val.write(name)    

for i in list:
    name = total_xml[i][:-4] + '\n'
    file_test.write(name)
    
    
file_train.close()
file_val.close()
file_test.close()

3. VOC转YOLO格式

    第2步只是把数据集划分了比例,想训练,还要进行这一步。在VOCdevkit目录下创建**
voc_label.py

,点击运行,会在目录下生成新的

labels

**文件夹,把数据集路径导入txt文件,将每个xml标注信息提取转换为了txt格式,每个图像对应一个txt文件。

# -*- coding: utf-8 -*-
import xml.etree.ElementTree as ET
import os

sets = ['train', 'val', 'test']  # 如果你的Main文件夹没有test.txt,就删掉'test'
# classes = ["a", "b"]   # 改成自己的类别,VOC数据集有以下20类别
classes = ["aeroplane", 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog',
           'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor']  # class names
abs_path = os.getcwd()  

def convert(size, box):
    dw = 1. / (size[0])
    dh = 1. / (size[1])
    x = (box[0] + box[1]) / 2.0 - 1
    y = (box[2] + box[3]) / 2.0 - 1
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return x, y, w, h

def convert_annotation(image_id):
    in_file = open(abs_path + '/VOCdevkit/VOC2007/Annotations/%s.xml' % (image_id), encoding='UTF-8')
    out_file = open(abs_path + '/VOCdevkit/VOC2007/labels/%s.txt' % (image_id), 'w')
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)
    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        # difficult = obj.find('Difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        b1, b2, b3, b4 = b
        # 标注越界修正
        if b2 > w:
            b2 = w
        if b4 > h:
            b4 = h
        b = (b1, b2, b3, b4)
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')

for image_set in sets:
    if not os.path.exists(abs_path + '/VOCdevkit/VOC2007/labels/'):
        os.makedirs(abs_path + '/VOCdevkit/VOC2007/labels/')

    image_ids = open(abs_path + '/VOCdevkit/VOC2007/ImageSets/Main/%s.txt' % (image_set)).read().strip().split()
    list_file = open(abs_path + '/VOCdevkit/VOC2007/%s.txt' % (image_set), 'w')
    for image_id in image_ids:
        list_file.write(abs_path + '/VOCdevkit/VOC2007/JPEGImages/%s.jpg\n' % (image_id))  # 要么自己补全路径,只写一半可能会报错
        convert_annotation(image_id)
    list_file.close()

运行之后,会在VOC2007目录下生成 **

labels

**文件夹和3个新的.txt文件

其中,新生成的3个的**

train.txt、val.txt、test.txt

**,这正是后面训练需要用的文件。每个txt文件里面存放的图片的文件名全路径:

4.训练准备

1.创建自己数据集的 yaml 文件

找到文件夹 data** , **在data 文件夹中创建自己数据集的 mydata.yaml 文件
**train val test : **三个txt的路径(注意冒号后要有一个空格)
nc : 自己数据集类别个数
**names: **数据集类别名字

2.修改训练 yolov7 的 yaml 文件

在 **cfg/training 文件夹中,选择想要使用的 yaml 文件,将文件中的 nc **改为自己数据集的类别数

3. 修改datasets.py文件

做完以上步骤,若直接开始训练,会报错:

AssertionError: train: No labels in 2007_train.cache. Can not train without labels

解决方法:
找到 ** **

**utils/dataset.py **

文件,搜索框搜索 Define label,将下图红色线处内容修改为’JPEGImages’。原本yolov7 代码这里是’images’,但VOC是把图片保存在JPEGImages下的,所以需要修改方能正确读取图片。

5. 开始训练

训练的时候 train 和 val 数据集都会使用到,验证集 test 在下一步使用

weights : 预训练权重位置
**cfg : **上一部分修改的 yolov7.yaml 文件位置
**data : **上一部分修改的数据集 yaml 文件位置
hyp :训练所需超参数位置,可以不用修改
epochs : 想要训练的轮数
batch-size : 步距,需要显存,过大可能报错

6.使用 test.py

当训练完之后想要使用测试集(test)进行测试的时候,找到 test.py

**weights **: 自己训练完之后生成的权重位置
data : 同训练时使用的一样(自己数据集的 yaml)
task : 改为 test

参考:yolov5训练—VOC数据集划分(训练集、验证集、测试集)和转换YOLO格式_目标检测_下雨天不下雨-DevPress官方社区 (csdn.net)


本文转载自: https://blog.csdn.net/qq_44177768/article/details/129799520
版权归原作者 I'mFAN 所有, 如有侵权,请联系我们删除。

“YOLOv7目标检测数据集划分”的评论:

还没有评论