0


ubuntu22.04下使用conda安装pytorch(cpu及gpu版本)

本文介绍了conda下安装cpu、gpu版本的pytorch;并介绍了如何设置镜像源

ubuntu环境安装pytorch的CPU版本与GPU版本

系统:ubuntu22.04
显卡:RTX 3050
依赖工具:miniconda

确认环境

lsb_release -a
No LSB modules are available.
Distributor ID:    Ubuntu
Description:    Ubuntu 22.04.3 LTS
Release:    22.04
Codename:    jammy
$ nvidia-smi
Tue Feb 1321:51:33 2024       
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.154.05             Driver Version: 535.154.05   CUDA Version: 12.2||-----------------------------------------+----------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id        Disp.A | Volatile Uncorr. ECC || Fan  Temp   Perf          Pwr:Usage/Cap |         Memory-Usage | GPU-Util  Compute M. ||||               MIG M. ||=========================================+======================+======================||0  NVIDIA GeForce RTX 3050...    Off | 00000000:02:00.0 Off |                  N/A || N/A   48C    P3               7W /  35W |    435MiB /  4096MiB |11%      Default ||||                  N/A |
+-----------------------------------------+----------------------+----------------------+
                                                                                         
+---------------------------------------------------------------------------------------+
| Processes:                                                                            ||  GPU   GI   CI        PID   Type   Process name                            GPU Memory ||        ID   ID                                                             Usage      ||=======================================================================================||0   N/A  N/A      1854      G   /usr/lib/xorg/Xorg                          226MiB ||0   N/A  N/A      2225      G   /usr/bin/gnome-shell                         84MiB ||0   N/A  N/A      3199      G   ...irefox/2987/usr/lib/firefox/firefox       95MiB ||0   N/A  N/A     48808      G   ...resh,SpareRendererForSitePerProcess       21MiB |
+---------------------------------------------------------------------------------------+
$ conda --version
conda 23.11.0

使用conda安装pytorch(CPU版本)

注意:默认conda安装pytorch的是cpu版本,如需要安装GPU版本的,注意直接看后面

创建一个新conda环境
$ conda create -n myPyt

新创建的环境不包含任何依赖可以使用

conda list

查看一下

开始安装pytorch(当然,也可以前面在创建环境的同时,把依赖包一同时安装了)

$ conda install pytorch

为了方便验证同时安装

ipython

IPython 是 Python 的原生交互式 shell 的增强版,可以完成许多不同寻常的任务,比如帮助实现并行化计算;主要使用它提供的交互性帮助,比如代码着色、改进了的命令行回调、制表符完成、宏功能以及改进了的交互式帮助

# 激活环境
$ conda activate myPyt
# 安装ipython
$ conda install ipython
验证一下pytorch环境

输入

ipython

,进入交互式环境,依次输入如下两条命令

import torch

torch.cuda.is_available()
$ ipython
Python 3.11.7 (main, Dec 152023, 18:12:31)[GCC 11.2.0]
Type 'copyright', 'credits' or 'license'formore information
IPython 8.20.0 -- An enhanced Interactive Python. Type '?'for help.

In [1]: import torch

In [2]: torch.cuda.is_available()
Out[2]: False

发现当前的版本是不cpu版本,不支持cuda加速的,我们查看一下依赖

$ conda list
# packages in environment at /home/bing/miniconda3/envs/myEnv:                                                                                                       #                                                                                                                                                                    # Name                    Version                   Build  Channel                                                                                                   
_libgcc_mutex             0.1                        main                                                                                                            
_openmp_mutex             5.1                       1_gnu                                                                                                            
blas                      1.0                         mkl                                                                                                            
bzip21.0.8                h7b6447c_0                                                                                                            
ca-certificates           2023.12.12           h06a4308_0                                                                                                            
cffi                      1.16.0          py311h5eee18b_0                                                                                                            
filelock                  3.13.1          py311h06a4308_0                                                                                                            
fsspec                    2023.10.0       py311h06a4308_0                                                                                                            
gmp                       6.2.1                h295c915_3                                                                                                            
gmpy2                     2.1.2           py311hc9b5ff0_0                                                                                                            
intel-openmp              2023.1.0         hdb19cb5_46306                                                                                                            
jinja2                    3.1.3           py311h06a4308_0                                                                                                            
ld_impl_linux-64          2.38                 h1181459_1                                                                                                            
libffi                    3.4.4                h6a678d5_0                                                                                                            
libgcc-ng                 11.2.0               h1234567_1                                                                                                            
libgomp                   11.2.0               h1234567_1                                                                                                            
libprotobuf               3.20.3               he621ea3_0                                                                                                            
libstdcxx-ng              11.2.0               h1234567_1                                                                                                            
libuuid                   1.41.5               h5eee18b_0                                                                                                            
markupsafe                2.1.3           py311h5eee18b_0                                                                                                            
mkl                       2023.1.0         h213fc3f_46344                                                                                                            
mkl-service               2.4.0           py311h5eee18b_1  
mkl_fft                   1.3.8           py311h5eee18b_0  
mkl_random                1.2.4           py311hdb19cb5_0  
mpc                       1.1.0                h10f8cd9_1  
mpfr                      4.0.2                hb69a4c5_1  
mpmath                    1.3.0           py311h06a4308_0  
ncurses                   6.4                  h6a678d5_0  
networkx                  3.1             py311h06a4308_0  
ninja                     1.10.2               h06a4308_5  
ninja-base                1.10.2               hd09550d_5  
numpy                     1.26.3          py311h08b1b3b_0  
numpy-base                1.26.3          py311hf175353_0  
openssl                   3.0.13               h7f8727e_0  
pip                       23.3.1          py311h06a4308_0  
pycparser                 2.21               pyhd3eb1b0_0  
python                    3.11.7               h955ad1f_0  
pytorch                   2.1.0           cpu_py311h6d93b4c_0  
readline                  8.2                  h5eee18b_0  
setuptools                68.2.2          py311h06a4308_0  
sqlite                    3.41.2               h5eee18b_0  
sympy                     1.12            py311h06a4308_0  
tbb                       2021.8.0             hdb19cb5_0  
tk                        8.6.12               h1ccaba5_0  
typing-extensions         4.9.0           py311h06a4308_1  
typing_extensions         4.9.0           py311h06a4308_1  
tzdata                    2023d                h04d1e81_0  
wheel                     0.41.2          py311h06a4308_0  
xz                        5.4.5                h5eee18b_0  
zlib                      1.2.13               h5eee18b_0 

发现确实没安装任何cuda库,而pytorch的版本我们也可以看到确实cpu版本

pytorch 2.1.0 cpu_py311h6d93b4c_0 

conda安装GPU版本的pytorch

如何安装gpu版本的pytorch呢?我们继续
我们查看一下pytorch可安装的版本

$ conda search pytorch
Loading channels: done# Name                       Version           Build  Channel...
pytorch                       1.13.1 gpu_cuda113py39h0809116_0  pkgs/main           
pytorch                       1.13.1 gpu_cuda113py39h09dffc6_0  pkgs/main           
pytorch                       1.13.1 gpu_cuda113py39h926b89d_1  pkgs/main           
pytorch                       1.13.1 gpu_cuda113py39hde3f150_1  pkgs/main           
pytorch                        2.0.1 cpu_py310hab5cca8_0  pkgs/main           
pytorch                        2.0.1 cpu_py310hdc00b08_0  pkgs/main           
pytorch                        2.0.1 cpu_py311h53e38e9_0  pkgs/main           
pytorch                        2.0.1 cpu_py311h6d93b4c_0  pkgs/main           
pytorch                        2.0.1 cpu_py38hab5cca8_0  pkgs/main           
pytorch                        2.0.1 cpu_py38hdc00b08_0  pkgs/main           
pytorch                        2.0.1 cpu_py39hab5cca8_0  pkgs/main           
pytorch                        2.0.1 cpu_py39hdc00b08_0  pkgs/main           
pytorch                        2.0.1 gpu_cuda118py310h7799f5a_0  pkgs/main           
pytorch                        2.0.1 gpu_cuda118py310he342708_0  pkgs/main           
pytorch                        2.0.1 gpu_cuda118py311h7668aad_0  pkgs/main           
pytorch                        2.0.1 gpu_cuda118py311hce0f3bd_0  pkgs/main           
pytorch                        2.0.1 gpu_cuda118py38h7799f5a_0  pkgs/main           
pytorch                        2.0.1 gpu_cuda118py38he342708_0  pkgs/main           
pytorch                        2.0.1 gpu_cuda118py39h7799f5a_0  pkgs/main           
pytorch                        2.0.1 gpu_cuda118py39he342708_0  pkgs/main           
pytorch                        2.1.0 cpu_py310hab5cca8_0  pkgs/main           
pytorch                        2.1.0 cpu_py310hdc00b08_0  pkgs/main           
pytorch                        2.1.0 cpu_py311h53e38e9_0  pkgs/main           
pytorch                        2.1.0 cpu_py311h6d93b4c_0  pkgs/main           
pytorch                        2.1.0 cpu_py38hab5cca8_0  pkgs/main           
pytorch                        2.1.0 cpu_py38hdc00b08_0  pkgs/main           
pytorch                        2.1.0 cpu_py39hab5cca8_0  pkgs/main           
pytorch                        2.1.0 cpu_py39hdc00b08_0  pkgs/main 

我们可以看到,

2.1.0

版本的,

Build

列中,有点的

cpu

有的是

gpu

,那么如何安装时指定安装带gpu表示的版本的呢?

我们只需制定版本号的同时,指定build即可

$ conda create -n pyt-gpu
$ conda activate pyt-gpu
$ conda installpytorch=2.0.1=gpu_cuda118py39he342708_0
...
The following NEW packages will be INSTALLED:

  _libgcc_mutex      pkgs/main/linux-64::_libgcc_mutex-0.1-main 
  _openmp_mutex      pkgs/main/linux-64::_openmp_mutex-5.1-1_gnu 
  blas               pkgs/main/linux-64::blas-1.0-mkl 
  ca-certificates    pkgs/main/linux-64::ca-certificates-2023.12.12-h06a4308_0 
  cffi               pkgs/main/linux-64::cffi-1.16.0-py39h5eee18b_0 
  cudatoolkit        pkgs/main/linux-64::cudatoolkit-11.8.0-h6a678d5_0 
  cudnn              pkgs/main/linux-64::cudnn-8.9.2.26-cuda11_0 
  cupti              pkgs/main/linux-64::cupti-11.8.0-he078b1a_0 
  filelock           pkgs/main/linux-64::filelock-3.13.1-py39h06a4308_0 
  gmp                pkgs/main/linux-64::gmp-6.2.1-h295c915_3 
  gmpy2              pkgs/main/linux-64::gmpy2-2.1.2-py39heeb90bb_0 
  intel-openmp       pkgs/main/linux-64::intel-openmp-2023.1.0-hdb19cb5_46306 
  jinja2             pkgs/main/linux-64::jinja2-3.1.3-py39h06a4308_0 
  ld_impl_linux-64   pkgs/main/linux-64::ld_impl_linux-64-2.38-h1181459_1 
  libffi             pkgs/main/linux-64::libffi-3.4.4-h6a678d5_0 
  libgcc-ng          pkgs/main/linux-64::libgcc-ng-11.2.0-h1234567_1 
  libgomp            pkgs/main/linux-64::libgomp-11.2.0-h1234567_1 
  libprotobuf        pkgs/main/linux-64::libprotobuf-3.20.3-he621ea3_0 
  libstdcxx-ng       pkgs/main/linux-64::libstdcxx-ng-11.2.0-h1234567_1 
  magma              pkgs/main/linux-64::magma-2.7.1-h2c23e93_0 
  markupsafe         pkgs/main/linux-64::markupsafe-2.1.3-py39h5eee18b_0 
  mkl                pkgs/main/linux-64::mkl-2023.1.0-h213fc3f_46344 
  mkl-service        pkgs/main/linux-64::mkl-service-2.4.0-py39h5eee18b_1 
  mkl_fft            pkgs/main/linux-64::mkl_fft-1.3.8-py39h5eee18b_0 
  mkl_random         pkgs/main/linux-64::mkl_random-1.2.4-py39hdb19cb5_0 
  mpc                pkgs/main/linux-64::mpc-1.1.0-h10f8cd9_1 
  mpfr               pkgs/main/linux-64::mpfr-4.0.2-hb69a4c5_1 
  mpmath             pkgs/main/linux-64::mpmath-1.3.0-py39h06a4308_0 
  ncurses            pkgs/main/linux-64::ncurses-6.4-h6a678d5_0 
  networkx           pkgs/main/linux-64::networkx-3.1-py39h06a4308_0 
  ninja              pkgs/main/linux-64::ninja-1.10.2-h06a4308_5 
  ninja-base         pkgs/main/linux-64::ninja-base-1.10.2-hd09550d_5 
  numpy              pkgs/main/linux-64::numpy-1.26.3-py39h5f9d8c6_0 
  numpy-base         pkgs/main/linux-64::numpy-base-1.26.3-py39hb5e798b_0 
  openssl            pkgs/main/linux-64::openssl-3.0.13-h7f8727e_0 
  pip                pkgs/main/linux-64::pip-23.3.1-py39h06a4308_0 
  pycparser          pkgs/main/noarch::pycparser-2.21-pyhd3eb1b0_0 
  python             pkgs/main/linux-64::python-3.9.18-h955ad1f_0 
  pytorch            pkgs/main/linux-64::pytorch-2.0.1-gpu_cuda118py39he342708_0 
  readline           pkgs/main/linux-64::readline-8.2-h5eee18b_0 
  setuptools         pkgs/main/linux-64::setuptools-68.2.2-py39h06a4308_0 
  sqlite             pkgs/main/linux-64::sqlite-3.41.2-h5eee18b_0 
  sympy              pkgs/main/linux-64::sympy-1.12-py39h06a4308_0 
  tbb                pkgs/main/linux-64::tbb-2021.8.0-hdb19cb5_0 
  tk                 pkgs/main/linux-64::tk-8.6.12-h1ccaba5_0 
  typing-extensions  pkgs/main/linux-64::typing-extensions-4.9.0-py39h06a4308_1 
  typing_extensions  pkgs/main/linux-64::typing_extensions-4.9.0-py39h06a4308_1 
  tzdata             pkgs/main/noarch::tzdata-2023d-h04d1e81_0 
  wheel              pkgs/main/linux-64::wheel-0.41.2-py39h06a4308_0 
  xz                 pkgs/main/linux-64::xz-5.4.5-h5eee18b_0 
  zlib               pkgs/main/linux-64::zlib-1.2.13-h5eee18b_0 
Proceed ([y]/n)? 

安装时,从提示安装的依赖我们可以看出,这个版本确实带上了cuda相关包

cudatoolkit

cudnn

,这次安装显然时间长了很多,包的大小也近

2G

安装完成后,我们再次确认一下cuda加速是否可用;

同样,我们先安装一个

ipython
$ conda install ipython

进入

ipython

后,依次执行如下代码

import torch

torch.cuda.is_available()
$ ipython
Python 3.9.18 (main, Sep 112023, 13:41:44) 
Type 'copyright', 'credits' or 'license'formore information
IPython 8.15.0 -- An enhanced Interactive Python. Type '?'for help.

In [1]: import torch

In [2]: torch.cuda.is_available()
Out[2]: True

这次cuda可以正常工作,到此完成gpu版本的pytorch安装

当然不是采用conda安装的话,希望自己手鲁,从nvidia驱动、cuda、cudnn这些库开始手动一个个安装好后,最后再安装pytorch也是可以的;关于pytorch手动安装方式,这里给出官方地址,点这里

最后再安装个jupyter工具

conda install jupyter

启动命令

jupyter-notebook

本文转载自: https://blog.csdn.net/youlinhuanyan/article/details/136109857
版权归原作者 丰色木夕 所有, 如有侵权,请联系我们删除。

“ubuntu22.04下使用conda安装pytorch(cpu及gpu版本)”的评论:

还没有评论