0


Python+Yolov5道路障碍物识别

Python+Yolov5道路障碍物识别

如需安装运行环境或远程调试,见文章底部个人QQ名片,由专业技术人员远程协助!

前言

这篇博客针对<<Python+Yolov5道路障碍物识别>>编写代码,代码整洁,规则,易读。 学习与应用推荐首选。

文章目录

一、所需工具软件

二、使用步骤

1. 引入库

2. 识别图像特征

3. 参数设置

4. 运行结果

三、在线协助

一、所需工具软件

1. Pycharm, Python

2. Qt, OpenCV

二、使用步骤

1.引入库

代码如下(示例):

import cv2
import torch
from numpy import random
 
from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
    scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
from utils.plots import plot_one_box
from utils.torch_utils import select_device, load_classifier, time_synchronized

2.识别图像特征

代码如下(示例):

defdetect(save_img=False):
    source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
        ('rtsp://', 'rtmp://', 'http://'))
 
    # Directories
    save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))  # increment run
    (save_dir / 'labels'if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir# Initialize
    set_logging()
    device = select_device(opt.device)
    half = device.type != 'cpu'# half precision only supported on CUDA# Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    stride = int(model.stride.max())  # model stride
    imgsz = check_img_size(imgsz, s=stride)  # check img_sizeif half:
        model.half()  # to FP16# Second-stage classifier
    classify = Falseif classify:
        modelc = load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
 
    # Set Dataloader
    vid_path, vid_writer = None, Noneif webcam:
        view_img = check_imshow()
        cudnn.benchmark = True# set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz, stride=stride)
 
    # Get names and colors
    names = model.module.names ifhasattr(model, 'module') else model.names
    colors = [[random.randint(0, 255) for _ inrange(3)] for _ in names]
 
    # Run inferenceif device.type != 'cpu':
        model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))  # run once
    t0 = time.time()
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0# 0 - 255 to 0.0 - 1.0if img.ndimension() == 3:
            img = img.unsqueeze(0)
 
        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=opt.augment)[0]
 
        # Apply NMS
        pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
        t2 = time_synchronized()
 
        # Apply Classifierif classify:
            pred = apply_classifier(pred, modelc, img, im0s)
 
        # Process detectionsfor i, det inenumerate(pred):  # detections per imageif webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
            else:
                p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
 
            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # img.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + (''if dataset.mode == 'image'elsef'_{frame}')  # img.txt
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwhiflen(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
 
 
                # Write resultsfor *xyxy, conf, cls inreversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh)  # label formatwithopen(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')
 
                    if save_img or view_img:  # Add bbox to image
                        label = f'{names[int(cls)]}{conf:.2f}'
                        plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
 
            # Print time (inference + NMS)print(f'{s}Done. ({t2 - t1:.3f}s)')
 
 
            # Save results (image with detections)if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                else:  # 'video'if vid_path != save_path:  # new video
                        vid_path = save_path
                        ifisinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release()  # release previous video writer
 
                        fourcc = 'mp4v'# output video codec
                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
                    vid_writer.write(im0)
 
    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}"if save_txt else''print(f"Results saved to {save_dir}{s}")
 
    print(f'Done. ({time.time() - t0:.3f}s)')
    
    print(opt)
    check_requirements()
 
    with torch.no_grad():
        if opt.update:  # update all models (to fix SourceChangeWarning)for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
                detect()
                strip_optimizer(opt.weights)
        else:
            detect()

3.参数定义

代码如下(示例):

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', nargs='+', type=str, default='yolov5_best_road_crack_recog.pt', help='model.pt path(s)')
    parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
    parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
    parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
    parser.add_argument('--view-img', action='store_true', help='display results')
    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
    parser.add_argument('--classes', nargs='+', type=int, default='0', help='filter by class: --class 0, or --class 0 2 3')
    parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
    parser.add_argument('--augment', action='store_true', help='augmented inference')
    parser.add_argument('--update', action='store_true', help='update all models')
    parser.add_argument('--project', default='runs/detect', help='save results to project/name')
    parser.add_argument('--name', default='exp', help='save results to project/name')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    opt = parser.parse_args()
    
    print(opt)
    check_requirements()
 
    with torch.no_grad():
        if opt.update:  # update all models (to fix SourceChangeWarning)for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
                detect()
                strip_optimizer(opt.weights)
        else:
            detect()

  1. 运行结果如下

三、在线协助:

如需安装运行环境或远程调试,见文章底部个人
QQ
名片,由专业技术人员远程协助!
1)远程安装运行环境,代码调试
2)Qt, C++, Python入门指导
3)界面美化
4)软件制作

博主推荐文章:https://blog.csdn.net/alicema1111/article/details/123851014

博主推荐文章:https://blog.csdn.net/alicema1111/article/details/128420453

个人博客主页:https://blog.csdn.net/alicema1111?type=blog

博主所有文章点这里:https://blog.csdn.net/alicema1111?type=blog

标签: python YOLO opencv

本文转载自: https://blog.csdn.net/alicema1111/article/details/129589741
版权归原作者 alicema1111 所有, 如有侵权,请联系我们删除。

“Python+Yolov5道路障碍物识别”的评论:

还没有评论