0


机器学习实验之肿瘤预测(决策树)

肿瘤预测(决策树)

【实验内容】

 基于威斯康辛乳腺癌数据集,采用决策树的方法进行肿瘤预测。

【实验要求】

1.加载sklearn自带的威斯康星乳腺癌数据集,探索数据。

2.进行数据集分割。

3.配置决策树模型。

4.训练决策树模型。

5.模型预测。

6.模型评估。

7.参数调优。可以根据评估结果,对模型设置或调整为更优的参数,使评估结果更准确。
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import numpy as np
from sklearn import tree # 导入决策树包

## 加载sklearn自带的威斯康星乳腺癌数据集,探索数据

cancers = load_breast_cancer()
cancers

## 进行数据集分割

x_train, x_test, y_train, y_test = train_test_split(
    cancers.data, cancers.target, test_size=0.30)
print("x_train.shape:", x_train.shape)
print("y_train.shape:", y_train.shape)
print("x_test.shape:", x_test.shape)
print("y_test.shape:", y_test.shape)

## 配置决策树模型

clf = tree.DecisionTreeClassifier() #加载决策树模型

## 训练决策树模型

clf.fit(x_train, y_train)

## 模型预测

predictions = clf.predict(x_test)

## 模型评估

from sklearn.metrics import accuracy_score # 导入准确率评价指标
print('Accuracy:%s'% accuracy_score(y_test, predictions))

## 参数调优

### criterion

clf = tree.DecisionTreeClassifier(criterion = 'entropy') #更换criterion参数
clf.fit(x_train, y_train)
predictions = clf.predict(x_test)
print('Accuracy:%s'% accuracy_score(y_test, predictions))

### max_depth

clf = tree.DecisionTreeClassifier(criterion = 'entropy',max_depth=2) 
clf.fit(x_train, y_train)
predictions = clf.predict(x_test)
print('Accuracy:%s'% accuracy_score(y_test, predictions))
x_train.shape: (398, 30)
y_train.shape: (398,)
x_test.shape: (171, 30)
y_test.shape: (171,)
Accuracy:0.9181286549707602
Accuracy:0.9005847953216374
Accuracy:0.9239766081871345
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import numpy as np
from sklearn import tree # 导入决策树包from jupyterthemes import jtplot
jtplot.style(theme='monokai')# 选择一个绘图主题

加载sklearn自带的威斯康星乳腺癌数据集,探索数据

cancers = load_breast_cancer()
cancers
{'data': array([[1.799e+01, 1.038e+01, 1.228e+02, ..., 2.654e-01, 4.601e-01,
         1.189e-01],
        [2.057e+01, 1.777e+01, 1.329e+02, ..., 1.860e-01, 2.750e-01,
         8.902e-02],
        [1.969e+01, 2.125e+01, 1.300e+02, ..., 2.430e-01, 3.613e-01,
         8.758e-02],
        ...,
        [1.660e+01, 2.808e+01, 1.083e+02, ..., 1.418e-01, 2.218e-01,
         7.820e-02],
        [2.060e+01, 2.933e+01, 1.401e+02, ..., 2.650e-01, 4.087e-01,
         1.240e-01],
        [7.760e+00, 2.454e+01, 4.792e+01, ..., 0.000e+00, 2.871e-01,
         7.039e-02]]),
 'target': array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
        0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0,
        1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0,
        1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1,
        1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0,
        0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1,
        1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0,
        0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0,
        1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1,
        1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0,
        0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0,
        0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0,
        1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1,
        1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1,
        1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,
        1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
        1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1,
        1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1]),
 'frame': None,
 'target_names': array(['malignant', 'benign'], dtype='<U9'),
 'DESCR': '.. _breast_cancer_dataset:\n\nBreast cancer wisconsin (diagnostic) dataset\n--------------------------------------------\n\n**Data Set Characteristics:**\n\n    :Number of Instances: 569\n\n    :Number of Attributes: 30 numeric, predictive attributes and the class\n\n    :Attribute Information:\n        - radius (mean of distances from center to points on the perimeter)\n        - texture (standard deviation of gray-scale values)\n        - perimeter\n        - area\n        - smoothness (local variation in radius lengths)\n        - compactness (perimeter^2 / area - 1.0)\n        - concavity (severity of concave portions of the contour)\n        - concave points (number of concave portions of the contour)\n        - symmetry\n        - fractal dimension ("coastline approximation" - 1)\n\n        The mean, standard error, and "worst" or largest (mean of the three\n        worst/largest values) of these features were computed for each image,\n        resulting in 30 features.  For instance, field 0 is Mean Radius, field\n        10 is Radius SE, field 20 is Worst Radius.\n\n        - class:\n                - WDBC-Malignant\n                - WDBC-Benign\n\n    :Summary Statistics:\n\n    ===================================== ====== ======\n                                           Min    Max\n    ===================================== ====== ======\n    radius (mean):                        6.981  28.11\n    texture (mean):                       9.71   39.28\n    perimeter (mean):                     43.79  188.5\n    area (mean):                          143.5  2501.0\n    smoothness (mean):                    0.053  0.163\n    compactness (mean):                   0.019  0.345\n    concavity (mean):                     0.0    0.427\n    concave points (mean):                0.0    0.201\n    symmetry (mean):                      0.106  0.304\n    fractal dimension (mean):             0.05   0.097\n    radius (standard error):              0.112  2.873\n    texture (standard error):             0.36   4.885\n    perimeter (standard error):           0.757  21.98\n    area (standard error):                6.802  542.2\n    smoothness (standard error):          0.002  0.031\n    compactness (standard error):         0.002  0.135\n    concavity (standard error):           0.0    0.396\n    concave points (standard error):      0.0    0.053\n    symmetry (standard error):            0.008  0.079\n    fractal dimension (standard error):   0.001  0.03\n    radius (worst):                       7.93   36.04\n    texture (worst):                      12.02  49.54\n    perimeter (worst):                    50.41  251.2\n    area (worst):                         185.2  4254.0\n    smoothness (worst):                   0.071  0.223\n    compactness (worst):                  0.027  1.058\n    concavity (worst):                    0.0    1.252\n    concave points (worst):               0.0    0.291\n    symmetry (worst):                     0.156  0.664\n    fractal dimension (worst):            0.055  0.208\n    ===================================== ====== ======\n\n    :Missing Attribute Values: None\n\n    :Class Distribution: 212 - Malignant, 357 - Benign\n\n    :Creator:  Dr. William H. Wolberg, W. Nick Street, Olvi L. Mangasarian\n\n    :Donor: Nick Street\n\n    :Date: November, 1995\n\nThis is a copy of UCI ML Breast Cancer Wisconsin (Diagnostic) datasets.\nhttps://goo.gl/U2Uwz2\n\nFeatures are computed from a digitized image of a fine needle\naspirate (FNA) of a breast mass.  They describe\ncharacteristics of the cell nuclei present in the image.\n\nSeparating plane described above was obtained using\nMultisurface Method-Tree (MSM-T) [K. P. Bennett, "Decision Tree\nConstruction Via Linear Programming." Proceedings of the 4th\nMidwest Artificial Intelligence and Cognitive Science Society,\npp. 97-101, 1992], a classification method which uses linear\nprogramming to construct a decision tree.  Relevant features\nwere selected using an exhaustive search in the space of 1-4\nfeatures and 1-3 separating planes.\n\nThe actual linear program used to obtain the separating plane\nin the 3-dimensional space is that described in:\n[K. P. Bennett and O. L. Mangasarian: "Robust Linear\nProgramming Discrimination of Two Linearly Inseparable Sets",\nOptimization Methods and Software 1, 1992, 23-34].\n\nThis database is also available through the UW CS ftp server:\n\nftp ftp.cs.wisc.edu\ncd math-prog/cpo-dataset/machine-learn/WDBC/\n\n.. topic:: References\n\n   - W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction \n     for breast tumor diagnosis. IS&T/SPIE 1993 International Symposium on \n     Electronic Imaging: Science and Technology, volume 1905, pages 861-870,\n     San Jose, CA, 1993.\n   - O.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer diagnosis and \n     prognosis via linear programming. Operations Research, 43(4), pages 570-577, \n     July-August 1995.\n   - W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Machine learning techniques\n     to diagnose breast cancer from fine-needle aspirates. Cancer Letters 77 (1994) \n     163-171.',
 'feature_names': array(['mean radius', 'mean texture', 'mean perimeter', 'mean area',
        'mean smoothness', 'mean compactness', 'mean concavity',
        'mean concave points', 'mean symmetry', 'mean fractal dimension',
        'radius error', 'texture error', 'perimeter error', 'area error',
        'smoothness error', 'compactness error', 'concavity error',
        'concave points error', 'symmetry error',
        'fractal dimension error', 'worst radius', 'worst texture',
        'worst perimeter', 'worst area', 'worst smoothness',
        'worst compactness', 'worst concavity', 'worst concave points',
        'worst symmetry', 'worst fractal dimension'], dtype='<U23'),
 'filename': 'breast_cancer.csv',
 'data_module': 'sklearn.datasets.data'}

进行数据集分割

x_train, x_test, y_train, y_test = train_test_split(
    cancers.data, cancers.target, test_size=0.30)print("x_train.shape:", x_train.shape)print("y_train.shape:", y_train.shape)print("x_test.shape:", x_test.shape)print("y_test.shape:", y_test.shape)
x_train.shape: (398, 30)
y_train.shape: (398,)
x_test.shape: (171, 30)
y_test.shape: (171,)

配置决策树模型

clf = tree.DecisionTreeClassifier()#加载决策树模型

训练决策树模型

clf.fit(x_train, y_train)
DecisionTreeClassifier()

模型预测

predictions = clf.predict(x_test)

模型评估

from sklearn.metrics import accuracy_score # 导入准确率评价指标print('Accuracy:%s'% accuracy_score(y_test, predictions))
Accuracy:0.9122807017543859

参数调优

criterion

clf = tree.DecisionTreeClassifier(criterion ='entropy')#更换criterion参数
clf.fit(x_train, y_train)
predictions = clf.predict(x_test)print('Accuracy:%s'% accuracy_score(y_test, predictions))
Accuracy:0.9239766081871345

max_depth

clf = tree.DecisionTreeClassifier(criterion ='entropy',max_depth=2) 
clf.fit(x_train, y_train)
predictions = clf.predict(x_test)print('Accuracy:%s'% accuracy_score(y_test, predictions))
Accuracy:0.9415204678362573


本文转载自: https://blog.csdn.net/qq_46039856/article/details/125012511
版权归原作者 Gettler•Main 所有, 如有侵权,请联系我们删除。

“机器学习实验之肿瘤预测(决策树)”的评论:

还没有评论