前言
最近在研究如何让YOLOv5推理得更快,总体看来,主要有以下这些思路:
- 使用更快的 GPU,即:P100 -> V100 -> A100
- 多卡GPU推理
- 减小模型尺寸,即YOLOv5x -> YOLOv5l -> YOLOv5m -> YOLOv5s -> YOLOv5n
- 进行半精度FP16推理与
python detect.py --half
- 减少–img-size,即 1280 -> 640 -> 320
- 导出成
ONNX
或OpenVINO
格式,获得CPU加速 - 导出到TensorRT获得GPU加速
- 批量输入图片进行推理
- 使用多进程/多线程进行推理
注:使用多卡GPU和多进程/多线程的推理并不会对单张图片推理起到加速作用,只适用于很多张图片一起进行推理的场景。
本篇主要来研究多进程/多线程是否能对YOLOv5算法推理起到加速作用。
实验环境
GPU:RTX2060
torch:1.7.1+cu110
检测图片大小:1920x1080
img-size:1920
使用半精度推理
half=True
推理模型:yolov5m.pt
实验过程
先放实验代码(detect.py),根据官方源码进行了小改:
import configparser
import time
from pathlib import Path
import cv2
import torch
import threading
import sys
import multiprocessing as mp
sys.path.append("yolov5")from models.experimental import attempt_load
from utils.datasets import LoadImages
from utils.general import check_img_size, non_max_suppression, scale_coords
from utils.plots import Annotator, colors
from utils.torch_utils import select_device
from concurrent.futures import ThreadPoolExecutor
Detect_path ='D:/Data/detect_outputs'# 检测图片输出路径defdetect(path, model_path, detect_size):
source = path
weights = model_path
imgsz = detect_size
conf_thres =0.25
iou_thres =0.45
device =""
augment =True
save_img =True
save_dir = Path(Detect_path)# increment run
device = select_device(device)
half = device.type!='cpu'# half precision only supported on CUDA# Load model
model = attempt_load(weights, map_location=device)# load FP32 model
stride =int(model.stride.max())# model stride
imgsz = check_img_size(imgsz, s=stride)# check img_sizefif half:
model.half()# to FP16# Set Dataloader
vid_path, vid_writer =None,None
dataset = LoadImages(source, img_size=imgsz, stride=stride)# Get names and colors
names = model.module.names ifhasattr(model,'module')else model.names
# Run inferenceif device.type!='cpu':
model(torch.zeros(1,3, imgsz, imgsz).to(device).type_as(next(model.parameters())))# run once
result_list =[]for path, img, im0s, vid_cap in dataset:# 读取图片传到gpu上
t1 = time.time()
img = torch.from_numpy(img).to(device)print("read pictures cost time:", time.time()- t1)
t2 = time.time()
img = img.half()if half else img.float()# uint8 to fp16/32
img /=255.0# 0 - 255 to 0.0 - 1.0if img.ndimension()==3:
img = img.unsqueeze(0)print("process pictures cost time:", time.time()- t2)# Inference
pred = model(img, augment=augment)[0]# Apply NMS
pred = non_max_suppression(pred, conf_thres, iou_thres)# Process detectionsfor i, det inenumerate(pred):# detections per image
p, s, im0, frame = path,'', im0s,getattr(dataset,'frame',0)
p = Path(p)# to Path
save_path =str(save_dir / p.name)# img.jpg
s +='%gx%g '% img.shape[2:]# print string# print(s) # 384x640
s_result =''# 输出检测结果
annotator = Annotator(im0, line_width=3, example=str(names))iflen(det):# Rescale boxes from img_size to im0 size
det[:,:4]= scale_coords(img.shape[2:], det[:,:4], im0.shape).round()# Print resultsfor c in det[:,-1].unique():
n =(det[:,-1]== c).sum()# detections per class# s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
s +=f"{n}{names[int(c)]}, "# add to string
s_result +=f"{n}{names[int(c)]} "# Write resultsfor*xyxy, conf, cls inreversed(det):if save_img:
c =int(cls)# label = f'{names[int(cls)]} {conf:.2f}'
label =f'{names[int(cls)]}'# print(label)
annotator.box_label(xyxy, label, color=colors(c,True))# print(xyxy)print(f'{s}')# print(f'{s_result}')
result_list.append(s_result)# 将conf对象中的数据写入到文件中
conf = configparser.ConfigParser()
cfg_file =open("glovar.cfg",'w')
conf.add_section("default")# 在配置文件中增加一个段# 第一个参数是段名,第二个参数是选项名,第三个参数是选项对应的值
conf.set("default","process",str(dataset.img_count))
conf.set("default","total",str(dataset.nf))
conf.write(cfg_file)
cfg_file.close()
im0 = annotator.result()# Save results (image with detections)
t3 = time.time()if save_img:if dataset.mode =='image':
cv2.imwrite(save_path, im0)else:# 'video' or 'stream'if vid_path != save_path:# new video
vid_path = save_path
ifisinstance(vid_writer, cv2.VideoWriter):
vid_writer.release()# release previous video writerif vid_cap:# video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w =int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h =int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))else:# stream
fps, w, h =30, im0.shape[1], im0.shape[0]
save_path +='.mp4'
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps,(w, h))
vid_writer.write(im0)print("write pictures cost time:", time.time()- t3)print('Done')defrun(path, model_path, detect_size):with torch.no_grad():
detect(path, model_path, detect_size)
首先进行小批量的图片进行实验,下面输入两张图片进行检测。
原始推理
if __name__ =='__main__':
s_t = time.time()
path1 ="D:/Data/image/DJI_0001_00100.jpg"
path2 ="D:/Data/image/DJI_0001_00530.jpg"
model_path ="../weights/best.pt"
detect_size =1920
run(path1, model_path, detect_size)
run(path2, model_path, detect_size)print("Tatal Cost Time:", time.time()- s_t)
Tatal Cost Time: 3.496427059173584
线程池推理
开辟两个线程进行推理:
if __name__ =='__main__':
s_t = time.time()
pool = ThreadPoolExecutor(max_workers=2)
path1 ="D:/Data/image/DJI_0001_00100.jpg"
path2 ="D:/Data/image/DJI_0001_00530.jpg"
model_path ="../weights/best.pt"
detect_size =1920
pool.submit(run, path1, model_path, detect_size)
pool.submit(run, path2, model_path, detect_size)
pool.shutdown(wait=True)print("Tatal Cost Time:", time.time()- s_t)
Tatal Cost Time: 3.2433135509490967
开双线程推理和原始推理时间类似,再次验证了python中的”伪多线程”。
进程池推理
开辟两个进程进行推理:
if __name__ =='__main__':
s_t = time.time()
pool = mp.Pool(processes=2)
path1 ="D:/Data/image/DJI_0001_00100.jpg"
path2 ="D:/Data/image/DJI_0001_00530.jpg"
model_path ="../weights/best.pt"
detect_size =1920
pool.apply_async(run,(path1, model_path, detect_size,))
pool.apply_async(run,(path2, model_path, detect_size,))
pool.close()
pool.join()print("Tatal Cost Time:", time.time()- s_t)
Tatal Cost Time: 6.020772695541382
双进程推理
双进程推理时间竟然是原始推理的两倍,以为是进程池的开销太大,于是换种写法,不使用进程池:
if __name__ =='__main__':
s_t = time.time()
path1 ="D:/Data/image/DJI_0001_00100.jpg"
path2 ="D:/Data/image/DJI_0001_00530.jpg"
model_path ="../weights/best.pt"
detect_size =1920
p1 = mp.Process(target=run, args=(path1, model_path, detect_size,))
p2 = mp.Process(target=run, args=(path2, model_path, detect_size,))
p1.start()
p2.start()
p1.join()
p2.join()print("Tatal Cost Time:", time.time()- s_t)
Tatal Cost Time: 6.089479446411133
发现双进程时间仍然较久,说明在数据较少时,进程的开销成本过高,这和我之前做的实验多线程和多进程的效率对比结果相类似。
于是下面将图像数量扩大到300张进行实验。
300pic-原始推理
if __name__ =='__main__':
s_t = time.time()
path1 ="D:/Data/image"
path2 ="D:/Data/image2"
path3 ="D:/Data/image3"
model_path ="../weights/best.pt"
detect_size =1920
run(path1, model_path, detect_size)
run(path2, model_path, detect_size)
run(path3, model_path, detect_size)print("Tatal Cost Time:", time.time()- s_t)
Tatal Cost Time: 62.02898120880127
300pic-多进程推理
if __name__ =='__main__':
s_t = time.time()
path1 ="D:/Data/image"
path2 ="D:/Data/image2"
path3 ="D:/Data/image3"
model_path ="../weights/best.pt"
detect_size =1920
p1 = mp.Process(target=run, args=(path1, model_path, detect_size,))
p2 = mp.Process(target=run, args=(path2, model_path, detect_size,))
p3 = mp.Process(target=run, args=(path3, model_path, detect_size,))
p1.start()
p2.start()
p3.start()
p1.join()
p2.join()
p3.join()print("Tatal Cost Time:", time.time()- s_t)
Tatal Cost Time: 47.85872721672058
和预期一样,当数据量提升上去时,多进程推理的速度逐渐超越原始推理。
总结
本次实验结果如下表所示:
图像处理张数原始推理(s)多线程推理(s)多进程推理(s)23.493.246.0830062.02/47.85
值得注意的是,使用多进程推理时,进程间保持独立,这意味着模型需要被重复在GPU上进行创建,因此,可以根据单进程所占显存大小来估算显卡所支持的最大进程数。
后续:在顶配机上进行实验
后面嫖到了组里i9-13700K+RTX4090的顶配主机,再进行实验,结果如下:
图像处理张数原始推理(s)多线程推理(s)多进程推理(s)22.212.093.9230029.23/17.61
后记:更正结论
后面觉得之前做的实验有些草率,尽管Python存在GIL的限制,但是在此类IO频繁的场景中,多线程仍然能缓解IO阻塞,从而实现加速,因此选用YOLOv5s模型,在4090上,对不同分辨率的图片进行测试:
输入图像分辨率:1920x1080
图像数量原始推理(s)双线程推理(s)双进程推理(s)21.921.853.921007.024.916.5220013.078.109.66
输入图像分辨率:13400x9528
图像数量原始推理(s)双线程推理(s)双进程推理(s)26.464.997.03100190.85119.43117.12200410.95239.84239.51
版权归原作者 zstar-_ 所有, 如有侵权,请联系我们删除。