一、PID使用背景
当今的自动控制技术都是基于反馈的概念。即一个In Loop闭环的理论,反馈理论的要素包括三个部分:测量、比较和执行。测量关心的变量,与期望值相比较,用这个误差纠正调节控制系统的响应。
PID(Proportion Intergration Differentiation)算法是比例微分积分控制的简称,该算法是自动控制原理中核心应用技术(从拉普拉斯变换应用于时域模型或者复数域模型用于调整整个模型的特性,稳,准,快),而在实际应用中更是非常广泛,基本与控制算法有关的模型都能够应用该算法包括有四旋翼无人机悬停,巡线控制,目标追踪,ADAS中的ACC,LCC等算法,因为其强大的性能和简单的调参方式能够在学术界和工业界都得到广泛的应用,这里我就简单拿四旋翼无人机的悬停技术来阐述该算法的用法,四旋翼无人机的悬停要用到很多项技术(PID,鲁棒控制,模糊控制)和传感器(激光测距雷达,摄像头)。四旋翼的上升,下降,悬停主要依靠的四个旋翼的升力,如果合力大于重力即上升,等于悬停,小于下降,当然四旋翼的引入是为了在对角线上旋翼旋转方向相同,相邻旋翼旋转方向相反,才能获得两个方向上力的抵消,垂直力的叠加。而四旋翼的定高悬停就需要用到PID控制,就比如说我设定一个上升的高度,我在实际上升过程中也需要根据我现在高度和实际高度的差距去改变控制量,最开始的时候距离设定高度较远我需要加大控制量,使其能够尽快到达,而如果接近时候可能需要放慢脚步,微调升力这就是比例控制,当我接近设定高度时候,就比如说实际高度和设定高度相差很小了,单纯通过比例控制其效果已经很小了(因为Kp系数是固定的,Kp不能设置很大,为了防止开始控制量过大,所以到最后误差很小时候,比例控制的作用很小),这时候就需要引入积分控制,积分控制和他的名字一样就是对误差在一定幅度上的时间累计,而积分是连续域上的含义,如果在离散域上就叫求和,简单来说就是在一定范围内的误差求和,当然这个误差是很小的,一段时间求和或者积分后就会得到一个逐渐变大的控制量,这就是我们看无人机在悬停时候,开始很快,到最后一定范围内的时候,他会慢慢的控制,逐渐接近目标。在绝大部分应用中可能PI控制,也即比例积分控制就已经能够满足要求了,但是这个D也即微分也有很重要的作用,D在高等数学中就是求导也即微分的意思,那微分项放进来具体就是为了防止突变,增加动态性能,回到最开始的例子,无人机定高好之后,突然吹过来一阵风,那他肯定会来回摆动,这时候微分作用就起作用了,因为D表示微分也可以表示变化率,如果高度误差的变化率较大,就会有微分控制对整体控制力进行调整,这就是PID的宽泛理解。
二、PID各自含义
P:比例控制,PID的核心思想就是根据误差去改变控制量,从而达到缩小误差的效果,比例控制的作用也很明显,就是通过误差去控制控制量。比如说误差较小,说明真实和预测已经非常接近,该时刻不需要过大的控制量,而反之,误差较大,说明真实和预测相差较大,此时可以稍微放大控制量。当然误差的正负同样能够改变控制量变化的方向,而Kp的系数其实就相当于如何从测量元件得到的误差量化成我们所需要的控制量,从而来减少误差,进行有差调整,其响应快速且控制及时。如果Kp较大,可以加速调节,减少误差,但是稳定性下降,所以需要合理设计Kp参数具体调参的方式是经验法、衰减曲线法、临界比例带法和动态特性法等,其主要还是满足控制理论要求上根据一定经验上去略微调整参数看最终的控制效果。拿上述的例子比如我们高度实际值是Htrue,而高度期望值是Hexpect所以说误差是
erro = Hexpect-Htrue
那么比例控制的控制量就是
G(Kp)= Kp erro
I:积分控制,积分控制需要在比例控制无法控制的时刻发挥作用,对于其微小残差进行修正,消除静差,提高系统无差性。他在提高整个系统无差控制时候有着非常关键且重要的作用,能够减少超调量,但是增加了调节时间,控制不及时,系统稳定性下降。在无人机定高悬停时候在最后时刻的修正中起着主导作用,能够帮助四旋翼无人机完成定高悬停。积分控制量的大小需要计算某时刻的残差累积,当然设计积分上限是积分控制引入时必须考虑到的问题,即积分控制量的最大值问题,不能够让积分作用的控制作用太强,这样非常容易影响整体的使用。积分作用的强弱取决于积分时间常数Ti,Ti越大,积分作用越弱,其参数整定方法于比例控制雷同。其积分数学公式如下,其中H的实际值和预计值都是随时间变化的
G(Ki)=1/Ti∫(H_expect-H_true )dt
D:微分控制,能反映偏差信号的变化趋势(变化速率),微分作用反映系统偏差信号的变化率,具有预见性,能预见偏差变化的趋势,加快系统动作时间,减少调节时间,改善动态性能,微分控制的关键在于对其变化率的控制,如果无人机处于一种高噪声的情况下,能够较好的稳定无人机,使其最终达到一种稳定的状态,其具有超前控制,减少超调,减少调节时间,使系统动态特性变好, 稳定性增加,但系统对扰动的抑制能力减弱,对扰动有较敏感的响应。的功能,微分控制需要通过微分,而微分的计算即是通过某时刻与上一时刻的变化除以时间差。
Derivative=(H_t-H_(t-1))/Δt
而微分控制的最终控制效果如下
G(Td)=Td (H_t-H_(t-1))/Δt
那么最终的PID控制效果就是
G(PID)=Kp* (Hexpect-Htrue)+ 1/Ti ∫(H_expect-H_true )dt+ Td(H_t-H_(t-1))/Δt
三、PID在自动控制原理中的应用
PID属于超前校正。可以提高系统的快速性,改善稳定性。在低频段,主要是 PI 控制规律起作用,提高系统型别,消除或减少稳态误差,在中频段主要是 PD 起作用,增大截止频率和相角裕度,提高响应速度。PID 控制可以全面的提高系统的控制性能。
比列基础上,积分消除静差,产生相位之后,但降低系统稳定裕度和工作频率,再加上微分作用,产生相位超前,提高稳定裕度和工作频率,提高性能。
动态误差上:PD<PID<P<PI(微分作用强,动态误差小)
调节时间:PD<PID<P<PI(微分强,调节快)
静差:0=PID=PI<PD<P (引入微分,能够适当减少静差)
四、PID各个算法适用范围
P控制
特点:简单,迅速克服干扰,跟踪设定值,过渡时间短,只有一个参数整定,有余差
适用场合:自衡能力强,纯之后时间t/T较小,负荷变化较小,工艺上允许有余差存在,控制质量要求不高。
PD控制
特点:增加稳定裕度,使比列增益扩大,加快过渡,减小动态偏差与余差,增加稳定性,克服容量滞后,但对高频干扰易振荡
适用场合:时间常数大,负荷变化小,反应慢,不应用于纯滞后,周期性干扰频繁场所
PI控制
特点:消除余差,减小稳定裕度,使比例增益变小,过渡时间变慢,动态偏差变大。
适用场合:控制通道时间常数小,负荷变化不大,无余差,不应用余容量滞后和纯滞后较大场合。
PID控制
特点:PID调节器兼顾PD调节器快速性,结合I调节器的无静差特点。克服容量滞后,减小动态偏差,提高稳定裕度,消除余差。
适用场合:容量滞后大,负荷变化不大,无余差,控制质量要求高。
五、P、I、D参数的预置与调整
比例增益 P
比例功能是利用目标信号和反馈信号的差值来调节输出控制量。一方面,我们希望目标信号和反馈信号无限接近,即差值很小,从而满足调节的精度:另一方面,我们又希望调节信号具有一定的幅度,以保证调节的灵敏度。解决这一矛盾的方法就是事先将差值信号进行放大。比例增益 P 就是用来设置差值信号的放大系数的,一般在初次调试时,P可按中间偏大值预置.或者暂时默认出厂值,待设备运转时再按实际情况细调。
积分时间I
积分环节I,其效果是,使经过比例增益P放大后的差值信号在积分时间内逐渐增大(或减小),从而减缓其变化速度,防止振荡。但积分时间I太长,又会当反馈信号急剧变化时,被控物理量难以迅速恢复。因此,I的取值与控制系统的时间常数有关:控制系统的时间常数较小时,积分时间应短些;控制系统的时间常数较大时,积分时间应长些,并且设计合理的积分上限对于积分控制进行规范化处理。
微分时间D
微分时间D是根据差值信号变化的速率,提前给出一个相应的调节动作,从而缩短了调节时间,克服因积分时间过长而使恢复滞后的缺陷。D的取值也与控制系统的时间常数有关:控制系统的时间常数较小时,微分时间应短些;反之,控制系统的时间常数较大时, 微分时间应长些。
P、I、D参数的调整原则
P、I、D参数的预置是相辅相成的,运行现场应根据实际情况进行如下细调:被控物理量在目标值附近振荡,首先加大积分时间I ,如仍有振荡,可适当减小比例增益P。被控物理量在发生变化后难以恢复,首先加大比例增益P,如果恢复仍较缓慢,可适当减小积分时间I,还可加大微分时间D。
六、PID引申:
1、PID分类:位置型PID,增量型PID
位置式PID:
特点:误差累加,易有大误差,控制量全量输出
增量型PID:
特点:控制量仅与几次误差有关,输出开度变化小,实现无冲击切换
区别:
①位置式PID控制的输出与整个过去的状态有关,用到了误差的累加值;而增量式PID的输出只与当前拍和前两拍的误差有关,因此位置式PID控制的累积误差相对更大。
②增量式PID控制输出的是控制量增量,并无积分作用,因此该方法适用于执行机构带积分部件的对象,如步进电机等,而位置式PID适用于执行机构不带积分部件的对象,如电液伺服阀。
③由于增量式PID输出的是控制量增量,如果计算机出现故障,误动作影响较小,而执行机构本身有记忆功能,可仍保持原位,不会严重影响系统的工作,而位置式的输出直接对应对象的输出,因此对系统影响较大。
2、积分饱和现象产生的内因和外因、危害
积分饱和现象:主要是由积分项的累计作用存在所引起的PID运算的饱和形象。
内因:控制器包含积分控制作用
外因:控制器长期存在偏差。
影响:系统超调量增加,上升时间增加,调节时间增加。
解决方案:
PI-P控制器,偏差小时去除I控制
②对于积分控制设计积分上限
③不用位置PID,用增量法或者速度法
3、PID微分改进:
作用:克服惯性,减少超调,抑制振荡
方法:
①不完全微分PID控制,串联一阶惯性环节,消除高频干扰,延长微分作用时间。不完全微分指的是在标准的PID控制算式,对于具有高频扰动的生产过程,微分作用响应过于灵敏,容易引起控制过程振荡,降低调节品质。为了克服这一缺点,同时又要使微分作用有效,可以在PID控制输出串联个一阶惯性环节,这样组成了不完全微分控制器。
②微分先行:将微分环节放在反馈回路中,避免定制下降引起系统振荡,明显改善系统动态特性。
4、PID算法变形算法
①微分先行(PI-D)
应用:化解微分冲击,随动控制
②比例先行(I-PD)
应用:消除比例冲击,定值控制
5、模糊PID的理解
模糊控制:一种逐步求精的思想。一个模糊控制器主要是由模糊化,模糊推理机和精确化三个功能模块和知识库(包括数据库和规则库)构成的。模糊PID控制是以偏差e及偏差的变化ec为输入,利用模糊控制规则在线对PID参数进行调整,以满足不同的偏差e和偏差的增量ec对PID参数的不同要求,模糊PID算法是模糊算法在PID参数整定上的应用,与纯粹的模糊控制算法是有区别的。普通的模糊控制器适用于直接推理控制器的输出,而模糊PID算法使用模糊算法修改PID参数,最终的控制器输出依然是由PID控制器来实现的。
版权归原作者 俞睿 所有, 如有侵权,请联系我们删除。