0


基于spark的大数据分析预测地震受灾情况的系统设计

基于spark的大数据分析预测地震受灾情况的系统设计

在本篇博客中,我们将介绍如何使用Apache Spark框架进行地震受灾情况的预测。我们将结合数据分析、特征工程、模型训练和评估等步骤,最终建立一个预测模型来预测地震造成的破坏程度,同时使用可视化大屏的方式展示数据的分布。

1、数据来源和准备

我们使用了合并后的地震数据作为我们的数据集。首先,让我们来看一下我们的数据集

# 读取数据
data = spark.read.csv("../data_ana/merged_data.csv", header=True, inferSchema=True).sample(False,0.1, seed=42)

data.show()

在这里插入图片描述

2、数据预处理和特征工程

在数据预处理和特征工程阶段,我们将对数据进行清洗、转换和特征提取等操作。具体步骤如下:

# 数据预处理和特征工程
string_cols =['gender_individual','presence_in_household','disability_individual','education_level_individual','marital_status_individual','legal_ownership_status','land_surface_condition','foundation_type','roof_type','ground_floor_type','other_floor_type','position','plan_configuration','condition_post_eq','damage_grade_x','technical_solution_proposed_x','area_assesed','technical_solution_proposed_y','vdcmun_name','district_name']# 创建 StringIndexer 和 OneHotEncoder 对象
indexers =[StringIndexer(inputCol=column, outputCol=column+"_index",handleInvalid="skip")for column in string_cols]
encoder = OneHotEncoder(inputCols=[column+"_index"for column in string_cols],
                        outputCols=[column+"_encoded"for column in string_cols])# 创建特征向量
assembler = VectorAssembler(inputCols=encoder.getOutputCols(), outputCol="features")# 创建Pipeline
pipeline = Pipeline(stages=indexers +[encoder, assembler])
data_final = pipeline.fit(data).transform(data)

data_final.show()

在这里插入图片描述

3、异常数据处理

在异常数据处理阶段,我们将处理可能存在的异常情况,确保数据的完整性和准确性:

# 使用正则表达式提取数字部分
data_final = data_final.withColumn("damage_grade_y_numeric", regexp_extract(data_final["damage_grade_y"],r'\d+',0))# 将列转换为 numeric 类型
data_final = data_final.withColumn("damage_grade_y_numeric", data_final["damage_grade_y_numeric"].cast("int"))# 显示转换后的结果
data_final.select("damage_grade_y","damage_grade_y_numeric").show()

在这里插入图片描述

4、标题模型训练和评估

在模型训练和评估阶段,我们将使用随机森林分类器进行模型训练,并评估模型在测试集上的表现:

# 划分数据集为训练集和测试集(train_data, test_data)= data_final.randomSplit([0.8,0.2], seed=1234)# 初始化随机森林分类器
rf = RandomForestClassifier(labelCol="damage_grade_y_numeric", featuresCol="features", numTrees=10)# 训练模型
model = rf.fit(train_data)# 在测试集上进行预测
predictions = model.transform(test_data)# 模型评估
evaluator = MulticlassClassificationEvaluator(labelCol="damage_grade_y_numeric", predictionCol="prediction", metricName="accuracy")
accuracy = evaluator.evaluate(predictions)print("Test Accuracy = {:.2f}%".format(accuracy *100))

在这里插入图片描述

标题5、可视化大屏实现与展示

为了更直观地展示预测结果,我们设计了一个可视化大屏。该大屏将包括地图展示、受灾情况分布图以及预测结果展示等内容,以帮助用户更好地理解地震造成的破坏程度。

<html><head><metacharset="utf-8"><title>www.husonghe.com</title><style>html{height: 100%;background-image:-webkit-radial-gradient(ellipse farthest-corner at center center, #1b44e4 0%, #020f3a 100%);background-image:radial-gradient(ellipse farthest-corner at center center, #1b44e4 0%, #020f3a 100%);cursor: move;}body{width: 100%;margin: 0;overflow: hidden;}</style></head><body><canvasid="canv"width="1920"height="572"></canvas><script>var num =200;var w = window.innerWidth;var h = window.innerHeight;var max =100;var _x =0;var _y =0;var _z =150;vardtr=function(d){return d * Math.PI/180;};varrnd=function(){return Math.sin(Math.floor(Math.random()*360)* Math.PI/180);};vardist=function(p1, p2, p3){return Math.sqrt(Math.pow(p2.x - p1.x,2)+ Math.pow(p2.y - p1.y,2)+ Math.pow(p2.z - p1.z,2));};var cam ={obj:{x: _x,y: _y,z: _z
  },dest:{x:0,y:0,z:1},dist:{x:0,y:0,z:200},ang:{cplane:0,splane:0,ctheta:0,stheta:0},zoom:1,disp:{x: w /2,y: h /2,z:0},upd:function(){
    cam.dist.x = cam.dest.x - cam.obj.x;
    cam.dist.y = cam.dest.y - cam.obj.y;
    cam.dist.z = cam.dest.z - cam.obj.z;
    cam.ang.cplane =-cam.dist.z / Math.sqrt(cam.dist.x * cam.dist.x + cam.dist.z * cam.dist.z);
    cam.ang.splane = cam.dist.x / Math.sqrt(cam.dist.x * cam.dist.x + cam.dist.z * cam.dist.z);
    cam.ang.ctheta = Math.sqrt(cam.dist.x * cam.dist.x + cam.dist.z * cam.dist.z)/ Math.sqrt(cam.dist.x * cam.dist.x + cam.dist.y * cam.dist.y + cam.dist.z * cam.dist.z);
    cam.ang.stheta =-cam.dist.y / Math.sqrt(cam.dist.x * cam.dist.x + cam.dist.y * cam.dist.y + cam.dist.z * cam.dist.z);}};var trans ={parts:{sz:function(p, sz){return{x: p.x * sz.x,y: p.y * sz.y,z: p.z * sz.z
      };},rot:{x:function(p, rot){return{x: p.x,y: p.y * Math.cos(dtr(rot.x))- p.z * Math.sin(dtr(rot.x)),z: p.y * Math.sin(dtr(rot.x))+ p.z * Math.cos(dtr(rot.x))};},y:function(p, rot){return{x: p.x * Math.cos(dtr(rot.y))+ p.z * Math.sin(dtr(rot.y)),y: p.y,z:-p.x * Math.sin(dtr(rot.y))+ p.z * Math.cos(dtr(rot.y))};},z:function(p, rot){return{x: p.x * Math.cos(dtr(rot.z))- p.y * Math.sin(dtr(rot.z)),y: p.x * Math.sin(dtr(rot.z))+ p.y * Math.cos(dtr(rot.z)),z: p.z
        };}},pos:function(p, pos){return{x: p.x + pos.x,y: p.y + pos.y,z: p.z + pos.z
      };}},pov:{plane:function(p){return{x: p.x * cam.ang.cplane + p.z * cam.ang.splane,y: p.y,z: p.x *-cam.ang.splane + p.z * cam.ang.cplane
      };},theta:function(p){return{x: p.x,y: p.y * cam.ang.ctheta - p.z * cam.ang.stheta,z: p.y * cam.ang.stheta + p.z * cam.ang.ctheta
      };},set:function(p){return{x: p.x - cam.obj.x,y: p.y - cam.obj.y,z: p.z - cam.obj.z
      };}},persp:function(p){return{x: p.x * cam.dist.z / p.z * cam.zoom,y: p.y * cam.dist.z / p.z * cam.zoom,z: p.z * cam.zoom,p: cam.dist.z / p.z
    };},disp:function(p, disp){return{x: p.x + disp.x,y:-p.y + disp.y,z: p.z + disp.z,p: p.p
    };},steps:function(_obj_, sz, rot, pos, disp){var _args = trans.parts.sz(_obj_, sz);
    _args = trans.parts.rot.x(_args, rot);
    _args = trans.parts.rot.y(_args, rot);
    _args = trans.parts.rot.z(_args, rot);
    _args = trans.parts.pos(_args, pos);
    _args = trans.pov.plane(_args);
    _args = trans.pov.theta(_args);
    _args = trans.pov.set(_args);
    _args = trans.persp(_args);
    _args = trans.disp(_args, disp);return _args;}};(function(){"use strict";varthreeD=function(param){this.transIn ={};this.transOut ={};this.transIn.vtx =(param.vtx);this.transIn.sz =(param.sz);this.transIn.rot =(param.rot);this.transIn.pos =(param.pos);};

  threeD.prototype.vupd=function(){this.transOut = trans.steps(this.transIn.vtx,this.transIn.sz,this.transIn.rot,this.transIn.pos,
      cam.disp
    );};varBuild=function(){this.vel =0.04;this.lim =360;this.diff =200;this.initPos =100;this.toX = _x;this.toY = _y;this.go();};Build.prototype.go=function(){this.canvas = document.getElementById("canv");this.canvas.width = window.innerWidth;this.canvas.height = window.innerHeight;this.$ = canv.getContext("2d");this.$.globalCompositeOperation ='source-over';this.varr =[];this.dist =[];this.calc =[];for(var i =0, len = num; i < len; i++){this.add();}this.rotObj ={x:0,y:0,z:0};this.objSz ={x: w /5,y: h /5,z: w /5};};Build.prototype.add=function(){this.varr.push(newthreeD({vtx:{x:rnd(),y:rnd(),z:rnd()},sz:{x:0,y:0,z:0},rot:{x:20,y:-20,z:0},pos:{x:this.diff * Math.sin(360* Math.random()* Math.PI/180),y:this.diff * Math.sin(360* Math.random()* Math.PI/180),z:this.diff * Math.sin(360* Math.random()* Math.PI/180)}}));this.calc.push({x:360* Math.random(),y:360* Math.random(),z:360* Math.random()});};Build.prototype.upd=function(){
    cam.obj.x +=(this.toX - cam.obj.x)*0.05;
    cam.obj.y +=(this.toY - cam.obj.y)*0.05;};Build.prototype.draw=function(){this.$.clearRect(0,0,this.canvas.width,this.canvas.height);
    cam.upd();this.rotObj.x +=0.1;this.rotObj.y +=0.1;this.rotObj.z +=0.1;for(var i =0; i <this.varr.length; i++){for(var val inthis.calc[i]){if(this.calc[i].hasOwnProperty(val)){this.calc[i][val]+=this.vel;if(this.calc[i][val]>this.lim)this.calc[i][val]=0;}}this.varr[i].transIn.pos ={x:this.diff * Math.cos(this.calc[i].x * Math.PI/180),y:this.diff * Math.sin(this.calc[i].y * Math.PI/180),z:this.diff * Math.sin(this.calc[i].z * Math.PI/180)};this.varr[i].transIn.rot =this.rotObj;this.varr[i].transIn.sz =this.objSz;this.varr[i].vupd();if(this.varr[i].transOut.p <0)continue;var g =this.$.createRadialGradient(this.varr[i].transOut.x,this.varr[i].transOut.y,this.varr[i].transOut.p,this.varr[i].transOut.x,this.varr[i].transOut.y,this.varr[i].transOut.p *2);this.$.globalCompositeOperation ='lighter';
      g.addColorStop(0,'hsla(255, 255%, 255%, 1)');
      g.addColorStop(.5,'hsla('+(i +2)+',85%, 40%,1)');
      g.addColorStop(1,'hsla('+(i)+',85%, 40%,.5)');this.$.fillStyle = g;this.$.beginPath();this.$.arc(this.varr[i].transOut.x,this.varr[i].transOut.y,this.varr[i].transOut.p *2,0, Math.PI*2,false);this.$.fill();this.$.closePath();}};Build.prototype.anim=function(){
    window.requestAnimationFrame =(function(){return window.requestAnimationFrame ||function(callback, element){
          window.setTimeout(callback,1000/60);};})();varanim=function(){this.upd();this.draw();
      window.requestAnimationFrame(anim);}.bind(this);
    window.requestAnimationFrame(anim);};Build.prototype.run=function(){this.anim();

    window.addEventListener('mousemove',function(e){this.toX =(e.clientX -this.canvas.width /2)*-0.8;this.toY =(e.clientY -this.canvas.height /2)*0.8;}.bind(this));
    window.addEventListener('touchmove',function(e){
      e.preventDefault();this.toX =(e.touches[0].clientX -this.canvas.width /2)*-0.8;this.toY =(e.touches[0].clientY -this.canvas.height /2)*0.8;}.bind(this));
    window.addEventListener('mousedown',function(e){for(var i =0; i <100; i++){this.add();}}.bind(this));
    window.addEventListener('touchstart',function(e){
      e.preventDefault();for(var i =0; i <100; i++){this.add();}}.bind(this));};var app =newBuild();
  app.run();})();
window.addEventListener('resize',function(){
  canvas.width = w = window.innerWidth;
  canvas.height = h = window.innerHeight;},false);</script></body></html>

在这里插入图片描述
如有遇到问题可以找小编沟通交流哦。另外小编帮忙辅导大课作业,学生毕设等。不限于python,java,大数据,模型训练等。
在这里插入图片描述


本文转载自: https://blog.csdn.net/lhyandlwl/article/details/137018770
版权归原作者 放学-别走 所有, 如有侵权,请联系我们删除。

“基于spark的大数据分析预测地震受灾情况的系统设计”的评论:

还没有评论