0


PyTorch 打印模型结构、输出维度和参数信息(torchsummary)

使用 PyTorch 深度学习搭建模型后,如果想查看模型结构,可以直接使用 print(model) 函数打印。但该输出结果不是特别直观,查阅发现有个能输出类似 keras 风格 model.summary() 的模型可视化工具。这里记录一下方便以后查阅。

PyTorch 打印模型结构、输出维度和参数信息(torchsummary)

安装 torchsummary

pip install torchsummary

输出网络信息

summary函数介绍

model

:网络模型

input_size

:网络输入图片的shape,这里不用加batch_size进去

batch_size

:batch_size参数,默认是-1

device

:在GPU还是CPU上运行,默认是cuda在GPU上运行,如果想在CPU上执行将参数改为CPU即可

import torch
import torch.nn as nn
from torchsummary import summary

classShallow_ConvNet(nn.Module):def__init__(self, in_channel, conv_channel_temp, kernel_size_temp, conv_channel_spat, kernel_size_spat,
                              pooling_size, pool_stride_size, dropoutRate, n_classes, class_kernel_size):super(Shallow_ConvNet, self).__init__()

        self.temp_conv = nn.Conv2d(in_channels=in_channel,
                                                                    out_channels=conv_channel_temp,
                                                                    kernel_size=(1, kernel_size_temp),
                                                                    stride=1,
                                                                    bias=False)

        self.spat_conv = nn.Conv2d(in_channels=conv_channel_temp,
                                                                  out_channels=conv_channel_spat,
                                                                  kernel_size=(kernel_size_spat,1),
                                                                  stride=1,
                                                                  bias=False)

        self.bn = nn.BatchNorm2d(num_features=conv_channel_spat)# slef.act_conv = x*x

        self.pooling = nn.AvgPool2d(kernel_size=(1, pooling_size),
                                                                   stride=(1, pool_stride_size))# slef.act_pool = log(max(x, eps))

        self.dropout = nn.Dropout(p=dropoutRate)

        self.class_conv = nn.Conv2d(in_channels=conv_channel_spat,
                                                                    out_channels=n_classes,
                                                                    kernel_size=(1, class_kernel_size),
                                                                    bias=False)

        self.softmax = nn.Softmax(dim=1)defsafe_log(self, x):""" Prevents :math:`log(0)` by using :math:`log(max(x, eps))`."""return torch.log(torch.clamp(x,min=1e-6))defforward(self, x):# input shape (batch_size, C, T)iflen(x.shape)isnot4:
            x = torch.unsqueeze(x,1)# input shape (batch_size, 1, C, T)
        x = self.temp_conv(x)
        x = self.spat_conv(x)
        x = self.bn(x)
        x = x*x # conv_activate
        x = self.pooling(x)
        x = self.safe_log(x)# pool_activate
        x = self.dropout(x)
        x = self.class_conv(x)
        x= self.softmax(x)
        out = torch.squeeze(x)return out

###============================ Initialization parameters ============================###
channels =44
samples =534

in_channel =1
conv_channel_temp =40
kernel_size_temp =25
conv_channel_spat =40
kernel_size_spat = channels
pooling_size =75
pool_stride_size =15
dropoutRate =0.3
n_classes =4
class_kernel_size =30defmain():input= torch.randn(32,1, channels, samples)
    model = Shallow_ConvNet(in_channel, conv_channel_temp, kernel_size_temp, conv_channel_spat, kernel_size_spat,
                                                            pooling_size, pool_stride_size, dropoutRate, n_classes, class_kernel_size)
    out = model(input)print('===============================================================')print('out', out.shape)print('model', model)
    summary(model=model, input_size=(1,channels,samples), batch_size=32, device="cpu")if __name__ =="__main__":
    main()

输出:

out torch.Size([32,4])
model Shallow_ConvNet((temp_conv): Conv2d(1,40, kernel_size=(1,25), stride=(1,1), bias=False)(spat_conv): Conv2d(40,40, kernel_size=(44,1), stride=(1,1), bias=False)(bn): BatchNorm2d(40, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(pooling): AvgPool2d(kernel_size=(1,75), stride=(1,15), padding=0)(dropout): Dropout(p=0.3, inplace=False)(class_conv): Conv2d(40,4, kernel_size=(1,30), stride=(1,1), bias=False)(softmax): Softmax(dim=1))----------------------------------------------------------------
        Layer (type)               Output Shape         Param #================================================================
            Conv2d-1[32,40,44,510]1,000
            Conv2d-2[32,40,1,510]70,400
       BatchNorm2d-3[32,40,1,510]80
         AvgPool2d-4[32,40,1,30]0
           Dropout-5[32,40,1,30]0
            Conv2d-6[32,4,1,1]4,800
           Softmax-7[32,4,1,1]0================================================================
Total params:76,280
Trainable params:76,280
Non-trainable params:0----------------------------------------------------------------
Input size (MB):2.87
Forward/backward pass size (MB):229.69
Params size (MB):0.29
Estimated Total Size (MB):232.85----------------------------------------------------------------

AttributeError: ‘tuple’ object has no attribute ‘size’

旧的summary加入LSTM之类的会报错,需要用新的summarry

pip install torchinfo
from torchinfo import summary

defmain():input= torch.randn(32, window_size, channels, samples)
    model = Cascade_Conv_LSTM(in_channel, out_channel_conv1, out_channel_conv2, out_channel_conv3, kernel_conv123, stride_conv123, padding_conv123,
                                                                    fc1_in, fc1_out, dropoutRate1, lstm1_in, lstm1_hidden, lstm1_layer, lstm2_in, lstm2_hidden, lstm2_layer, fc2_in, fc2_out, dropoutRate2,
                                                                    fc3_in, n_classes)# model = model.to('cuda:1')# input = torch.from_numpy(input).to('cuda:1').to(torch.float32).requires_grad_()
    out = model(input)print('===============================================================')print('out', out.shape)print('model', model)
    summary(model=model, input_size=(32,10,channels,samples), device="cpu")if __name__ =="__main__":
    main()
==========================================================================================
Layer (type:depth-idx)                   Output Shape              Param #==========================================================================================
Cascade_Conv_LSTM                        [32,4]--
├─Sequential:1-1[320,32,10,11]--
│    └─Conv2d:2-1[320,32,10,11]288
│    └─ELU:2-2[320,32,10,11]--
├─Sequential:1-2[320,64,10,11]--
│    └─Conv2d:2-3[320,64,10,11]18,432
│    └─ELU:2-4[320,64,10,11]--
├─Sequential:1-3[320,128,10,11]--
│    └─Conv2d:2-5[320,128,10,11]73,728
│    └─ELU:2-6[320,128,10,11]--
├─Sequential:1-4[320,1024]--
│    └─Linear:2-7[320,1024]14,418,944
│    └─ELU:2-8[320,1024]--
├─Dropout:1-5[320,1024]--
├─LSTM:1-6[32,10,1024]8,396,800
├─LSTM:1-7[32,10,1024]8,396,800
├─Sequential:1-8[32,1024]--
│    └─Linear:2-9[32,1024]1,049,600
│    └─ELU:2-10[32,1024]--
├─Dropout:1-9[32,1024]--
├─Linear:1-10[32,4]4,100
├─Softmax:1-11[32,4]--==========================================================================================
Total params:32,358,692
Trainable params:32,358,692
Non-trainable params:0
Total mult-adds (G):13.28==========================================================================================
Input size (MB):0.14
Forward/backward pass size (MB):71.21
Params size (MB):129.43
Estimated Total Size (MB):200.78==========================================================================================

本文转载自: https://blog.csdn.net/qq_41990294/article/details/128770708
版权归原作者 梁小憨憨 所有, 如有侵权,请联系我们删除。

“PyTorch 打印模型结构、输出维度和参数信息(torchsummary)”的评论:

还没有评论