0


sigmoid函数求导

sigmoid函数求导

sigmoid函数:

    f
   
   
    (
   
   
    x
   
   
    )
   
   
    =
   
   
    
     1
    
    
     
      1
     
     
      +
     
     
      
       e
      
      
       
        −
       
       
        x
       
      
     
    
   
  
  
   f(x)= \frac{1}{1+e^{-x}}
  
 
f(x)=1+e−x1​

sigmoid函数的导数:

     f
    
    
     ′
    
   
   
    (
   
   
    x
   
   
    )
   
   
    =
   
   
    f
   
   
    (
   
   
    x
   
   
    )
   
   
    (
   
   
    1
   
   
    −
   
   
    f
   
   
    (
   
   
    x
   
   
    )
   
   
    )
   
  
  
   f'(x)=f(x)(1-f(x))
  
 
f′(x)=f(x)(1−f(x))

推导过程

  • 首先,对 f ( x ) f(x) f(x)进行变形: f ( x ) = 1 1 + e − x = 1 1 + 1 e x = ( 1 + 1 e x ) − 1 = ( e x e x + 1 e x ) − 1 = ( e x + 1 e x ) − 1 = e x e x + 1 = ( e x + 1 ) − 1 e x + 1 = e x + 1 e x + 1 − 1 e x + 1 = 1 − 1 e x + 1 = 1 − ( e x + 1 ) − 1 \begin{aligned} f(x)&= \frac{1}{1+e^{-x}} \ &= \frac{1}{1+\frac{1}{e^x}} \ &=(1+\frac{1}{e^x})^{-1} \ &=(\frac{e^x}{e^x}+\frac{1}{e^x})^{-1} \ &=(\frac{e^{x}+1}{e^x})^{-1} \ &=\frac{e^x}{e^{x}+1} \ &=\frac{(e^{x}+1)-1}{e^{x}+1} \ &=\frac{e^{x}+1}{e^{x}+1}-\frac{1}{e^{x}+1} \ &=1-\frac{1}{e^{x}+1} \ &=1-(e^{x}+1)^{-1} \end{aligned} f(x)​=1+e−x1​=1+ex1​1​=(1+ex1​)−1=(exex​+ex1​)−1=(exex+1​)−1=ex+1ex​=ex+1(ex+1)−1​=ex+1ex+1​−ex+11​=1−ex+11​=1−(ex+1)−1​
  • 求导:

注意使用链式法则求导

          f
         
         
          ′
         
        
        
         (
        
        
         x
        
        
         )
        
       
      
     
     
      
       
        
        
         =
        
        
         (
        
        
         1
        
        
         −
        
        
         (
        
        
         
          e
         
         
          x
         
        
        
         +
        
        
         1
        
        
         
          )
         
         
          
           −
          
          
           1
          
         
        
        
         
          )
         
         
          ′
         
        
       
      
     
    
    
     
      
       
      
     
     
      
       
        
        
         =
        
        
         (
        
        
         −
        
        
         1
        
        
         )
        
        
         (
        
        
         −
        
        
         1
        
        
         )
        
        
         (
        
        
         
          e
         
         
          x
         
        
        
         +
        
        
         1
        
        
         
          )
         
         
          
           −
          
          
           2
          
         
        
        
         
          e
         
         
          x
         
        
       
      
     
    
    
     
      
       
      
     
     
      
       
        
        
         =
        
        
         (
        
        
         
          e
         
         
          x
         
        
        
         +
        
        
         1
        
        
         
          )
         
         
          
           −
          
          
           2
          
         
        
        
         
          e
         
         
          x
         
        
       
      
     
    
    
     
      
       
      
     
     
      
       
        
        
         =
        
        
         (
        
        
         
          e
         
         
          x
         
        
        
         +
        
        
         1
        
        
         
          )
         
         
          
           −
          
          
           1
          
         
        
        
         (
        
        
         
          e
         
         
          x
         
        
        
         +
        
        
         1
        
        
         
          )
         
         
          
           −
          
          
           1
          
         
        
        
         
          e
         
         
          x
         
        
       
      
     
    
   
   
     \begin{aligned} f'(x)&=(1-(e^{x}+1)^{-1})' \\ &=(-1)(-1)(e^{x}+1)^{-2} e^{x}\\ &=(e^{x}+1)^{-2} e^{x}\\ &=(e^{x}+1)^{-1}(e^{x}+1)^{-1} e^{x} \end{aligned} 
   
  
 f′(x)​=(1−(ex+1)−1)′=(−1)(−1)(ex+1)−2ex=(ex+1)−2ex=(ex+1)−1(ex+1)−1ex​

由前面提到的

    f
   
   
    (
   
   
    x
   
   
    )
   
  
  
   f(x)
  
 
f(x)的变形可知:

 
  
   
    
     
      
       
        
         f
        
        
         (
        
        
         x
        
        
         )
        
       
      
     
     
      
       
        
        
         =
        
        
         
          1
         
         
          
           1
          
          
           +
          
          
           
            e
           
           
            
             −
            
            
             x
            
           
          
         
        
        
         =
        
        
         (
        
        
         1
        
        
         +
        
        
         
          e
         
         
          
           −
          
          
           x
          
         
        
        
         
          )
         
         
          
           −
          
          
           1
          
         
        
        
         =
        
        
         
          
           e
          
          
           x
          
         
         
          
           
            e
           
           
            x
           
          
          
           +
          
          
           1
          
         
        
        
         =
        
        
         
          e
         
         
          x
         
        
        
         (
        
        
         
          e
         
         
          x
         
        
        
         +
        
        
         1
        
        
         
          )
         
         
          
           −
          
          
           1
          
         
        
       
      
     
    
   
   
     \begin{aligned} f(x)&=\frac{1}{1+e^{-x}} =(1+e^{-x})^{-1}=\frac{e^{x}}{e^{x}+1}=e^{x}(e^{x}+1)^{-1} \end{aligned} 
   
  
 f(x)​=1+e−x1​=(1+e−x)−1=ex+1ex​=ex(ex+1)−1​

所以

          f
         
         
          ′
         
        
        
         (
        
        
         x
        
        
         )
        
       
      
     
     
      
       
        
        
         =
        
        
         (
        
        
         
          e
         
         
          x
         
        
        
         +
        
        
         1
        
        
         
          )
         
         
          
           −
          
          
           1
          
         
        
        
         ⋅
        
        
         (
        
        
         
          e
         
         
          x
         
        
        
         +
        
        
         1
        
        
         
          )
         
         
          
           −
          
          
           1
          
         
        
        
         
          e
         
         
          x
         
        
       
      
     
    
    
     
      
       
      
     
     
      
       
        
        
         =
        
        
         (
        
        
         
          e
         
         
          x
         
        
        
         +
        
        
         1
        
        
         
          )
         
         
          
           −
          
          
           1
          
         
        
        
         ⋅
        
        
         
          e
         
         
          x
         
        
        
         (
        
        
         
          e
         
         
          x
         
        
        
         +
        
        
         1
        
        
         
          )
         
         
          
           −
          
          
           1
          
         
        
       
      
     
    
    
     
      
       
      
     
     
      
       
        
        
         =
        
        
         (
        
        
         
          e
         
         
          x
         
        
        
         +
        
        
         1
        
        
         
          )
         
         
          
           −
          
          
           1
          
         
        
        
         ⋅
        
        
         (
        
        
         1
        
        
         +
        
        
         
          e
         
         
          
           −
          
          
           x
          
         
        
        
         
          )
         
         
          
           −
          
          
           1
          
         
        
       
      
     
    
    
     
      
       
      
     
     
      
       
        
        
         =
        
        
         
          1
         
         
          
           
            e
           
           
            x
           
          
          
           +
          
          
           1
          
         
        
        
         ⋅
        
        
         
          1
         
         
          
           1
          
          
           +
          
          
           
            e
           
           
            
             −
            
            
             x
            
           
          
         
        
       
      
     
    
    
     
      
       
      
     
     
      
       
        
        
         =
        
        
         
          
           (
          
          
           
            e
           
           
            x
           
          
          
           +
          
          
           1
          
          
           )
          
          
           −
          
          
           
            e
           
           
            x
           
          
         
         
          
           
            e
           
           
            x
           
          
          
           +
          
          
           1
          
         
        
        
         ⋅
        
        
         
          1
         
         
          
           1
          
          
           +
          
          
           
            e
           
           
            
             −
            
            
             x
            
           
          
         
        
       
      
     
    
    
     
      
       
      
     
     
      
       
        
        
         =
        
        
         (
        
        
         
          
           
            e
           
           
            x
           
          
          
           +
          
          
           1
          
         
         
          
           
            e
           
           
            x
           
          
          
           +
          
          
           1
          
         
        
        
         −
        
        
         
          
           e
          
          
           x
          
         
         
          
           
            e
           
           
            x
           
          
          
           +
          
          
           1
          
         
        
        
         )
        
        
         ⋅
        
        
         
          1
         
         
          
           1
          
          
           +
          
          
           
            e
           
           
            
             −
            
            
             x
            
           
          
         
        
       
      
     
    
    
     
      
       
      
     
     
      
       
        
        
         =
        
        
         (
        
        
         1
        
        
         −
        
        
         
          
           e
          
          
           x
          
         
         
          
           
            e
           
           
            x
           
          
          
           +
          
          
           1
          
         
        
        
         )
        
        
         ⋅
        
        
         
          1
         
         
          
           1
          
          
           +
          
          
           
            e
           
           
            
             −
            
            
             x
            
           
          
         
        
       
      
     
    
    
     
      
       
      
     
     
      
       
        
        
         =
        
        
         (
        
        
         1
        
        
         −
        
        
         
          1
         
         
          
           1
          
          
           +
          
          
           
            e
           
           
            
             −
            
            
             x
            
           
          
         
        
        
         )
        
        
         ⋅
        
        
         
          1
         
         
          
           1
          
          
           +
          
          
           
            e
           
           
            
             −
            
            
             x
            
           
          
         
        
       
      
     
    
    
     
      
       
      
     
     
      
       
        
        
         =
        
        
         (
        
        
         1
        
        
         −
        
        
         f
        
        
         (
        
        
         x
        
        
         )
        
        
         )
        
        
         ⋅
        
        
         f
        
        
         (
        
        
         x
        
        
         )
        
       
      
     
    
    
     
      
       
      
     
     
      
       
        
        
         =
        
        
         f
        
        
         (
        
        
         x
        
        
         )
        
        
         (
        
        
         1
        
        
         −
        
        
         f
        
        
         (
        
        
         x
        
        
         )
        
        
         )
        
       
      
     
    
   
   
     \begin{aligned} f'(x)&=(e^{x}+1)^{-1} \cdot (e^{x}+1)^{-1} e^{x} \\ &= (e^{x}+1)^{-1} \cdot e^{x}(e^{x}+1)^{-1} \\ &=(e^{x}+1)^{-1} \cdot (1+e^{-x})^{-1} \\ &=\frac{1}{e^{x}+1} \cdot \frac{1}{1+e^{-x}} \\ &=\frac{(e^{x}+1)-e^{x}}{e^{x}+1} \cdot \frac{1}{1+e^{-x}} \\ &=(\frac{e^{x}+1}{e^{x}+1}-\frac{e^{x}}{e^{x}+1}) \cdot \frac{1}{1+e^{-x}} \\ &=(1-\frac{e^{x}}{e^{x}+1}) \cdot \frac{1}{1+e^{-x}} \\ &=(1-\frac{1}{1+e^{-x}}) \cdot \frac{1}{1+e^{-x}} \\ &=(1-f(x)) \cdot f(x) \\ &=f(x)(1-f(x)) \end{aligned} 
   
  
 f′(x)​=(ex+1)−1⋅(ex+1)−1ex=(ex+1)−1⋅ex(ex+1)−1=(ex+1)−1⋅(1+e−x)−1=ex+11​⋅1+e−x1​=ex+1(ex+1)−ex​⋅1+e−x1​=(ex+1ex+1​−ex+1ex​)⋅1+e−x1​=(1−ex+1ex​)⋅1+e−x1​=(1−1+e−x1​)⋅1+e−x1​=(1−f(x))⋅f(x)=f(x)(1−f(x))​
标签: 算法 人工智能

本文转载自: https://blog.csdn.net/qq_35229591/article/details/128752369
版权归原作者 卡洛驰 所有, 如有侵权,请联系我们删除。

“sigmoid函数求导”的评论:

还没有评论