0


注意力机制——ECANet及Mobilenetv2模型应用

一、介绍
ECANet(CVPR 2020)作为一种轻量级的注意力机制,其实也是通道注意力机制的一种实现形式。其论文和开源代码为:
论文地址:https://arxiv.org/abs/1910.03151
代码:https://github.com/BangguWu/ECANet
ECA模块,去除了原来SE模块中的全连接层,直接在全局平均池化之后的特征上通过一个1D卷积进行学习。
具体的讲:通过共享相同的学习参数,通过内核大小为k的1维卷积来实现通道之间的信息交互:(一维卷积和1 × 1 卷积是不同的,一维指的是1 × k 的卷积)
ECA-Net可以插入到其他CNN网络中来增强其性能,比如:插入到ResNet、MobileNetV2中。本文主要将ECA模块加入到Mobilenetv2的残差堆叠块中。
文中同样附上SENet的嵌入代码(已注释),如有需要,可进行比较;因项目需要转换caffe模型(具体torch如何转,请看之前的博文),经测试SENet虽然转换成功,但测试时所需的caffe库不支持,所以换成ECA-Net,经转换测试,可正常出结果,且效果提升大约五个点左右。
ReLU6替换为Leakyrelu,同样是因为不支持的原因(板子太老)
二、代码
eca_module.py

  1. import torch
  2. from torch import nn
  3. from torch.nn.parameter import Parameter
  4. classeca_layer(nn.Module):"""Constructs a ECA module.
  5. Args:
  6. channel: Number of channels of the input feature map
  7. k_size: Adaptive selection of kernel size
  8. """def__init__(self, channel, k_size=3):super(eca_layer, self).__init__()
  9. self.avg_pool = nn.AdaptiveAvgPool2d(1)
  10. self.conv = nn.Conv1d(1,1, kernel_size=k_size, padding=(k_size -1)//2, bias=False)
  11. self.sigmoid = nn.Sigmoid()defforward(self, x):# feature descriptor on the global spatial information
  12. y = self.avg_pool(x)# Two different branches of ECA module
  13. y = self.conv(y.squeeze(-1).transpose(-1,-2)).transpose(-1,-2).unsqueeze(-1)# Multi-scale information fusion
  14. y = self.sigmoid(y)return x * y.expand_as(x)

eca_mobilenetv2.py

  1. import math
  2. import os
  3. import torch
  4. import torch.nn as nn
  5. import torch.utils.model_zoo as model_zoo
  6. from.eca_module import eca_layer
  7. BatchNorm2d = nn.BatchNorm2d
  8. defconv_bn(inp, oup, stride):return nn.Sequential(
  9. nn.Conv2d(inp, oup,3, stride,1, bias=False),
  10. BatchNorm2d(oup),# nn.ReLU6(inplace=True)
  11. nn.LeakyReLU(0.1))defconv_1x1_bn(inp, oup):return nn.Sequential(
  12. nn.Conv2d(inp, oup,1,1,0, bias=False),
  13. BatchNorm2d(oup),# nn.ReLU6(inplace=True)# nn.ReLU(inplace=True)
  14. nn.LeakyReLU(0.1))def_make_divisible(v, divisor, min_value=None):if min_value isNone:
  15. min_value = divisor
  16. new_v =max(min_value,int(v + divisor /2)// divisor * divisor)# Make sure that round down does not go down by more than 10%.if new_v <0.9* v:
  17. new_v += divisor
  18. return new_v
  19. classh_sigmoid(nn.Module):def__init__(self, inplace=True):super(h_sigmoid, self).__init__()
  20. self.relu = nn.ReLU6(inplace=inplace)defforward(self, x):return self.relu(x +3)/6classSELayer(nn.Module):def__init__(self, channel, reduction=4):super(SELayer, self).__init__()
  21. self.avg_pool = nn.AdaptiveAvgPool2d(1)
  22. self.fc = nn.Sequential(
  23. nn.Linear(channel, _make_divisible(channel // reduction,8)),
  24. nn.ReLU(inplace=True),
  25. nn.Linear(_make_divisible(channel // reduction,8), channel),
  26. h_sigmoid())defforward(self, x):
  27. b, c, _, _ = x.size()
  28. y = self.avg_pool(x).view(b, c)
  29. y = self.fc(y).view(b, c,1,1)return x * y
  30. classInvertedResidual(nn.Module):def__init__(self, inp, oup, stride, expand_ratio,k_size):super(InvertedResidual, self).__init__()
  31. self.stride = stride
  32. assert stride in[1,2]
  33. hidden_dim =round(inp * expand_ratio)
  34. self.use_res_connect = self.stride ==1and inp == oup
  35. layers =[]if expand_ratio ==1:
  36. layers.append(eca_layer(oup, k_size))
  37. self.conv = nn.Sequential(#--------------------------------------------## 进行3x3的逐层卷积,进行跨特征点的特征提取#--------------------------------------------#
  38. nn.Conv2d(hidden_dim, hidden_dim,3, stride,1, groups=hidden_dim, bias=False),
  39. BatchNorm2d(hidden_dim),# nn.ReLU6(inplace=True),
  40. nn.LeakyReLU(0.1),# SELayer(hidden_dim),#-----------------------------------## 利用1x1卷积进行通道数的调整#-----------------------------------#
  41. nn.Conv2d(hidden_dim, oup,1,1,0, bias=False),
  42. BatchNorm2d(oup),)else:
  43. layers.append(eca_layer(oup, k_size))
  44. self.conv = nn.Sequential(#-----------------------------------## 利用1x1卷积进行通道数的上升#-----------------------------------#
  45. nn.Conv2d(inp, hidden_dim,1,1,0, bias=False),
  46. BatchNorm2d(hidden_dim),# nn.ReLU6(inplace=True),
  47. nn.LeakyReLU(0.1),#--------------------------------------------## 进行3x3的逐层卷积,进行跨特征点的特征提取#--------------------------------------------#
  48. nn.Conv2d(hidden_dim, hidden_dim,3, stride,1, groups=hidden_dim, bias=False),
  49. BatchNorm2d(hidden_dim),# SELayer(hidden_dim),# nn.ReLU6(inplace=True),
  50. nn.LeakyReLU(0.1),#-----------------------------------## 利用1x1卷积进行通道数的下降#-----------------------------------#
  51. nn.Conv2d(hidden_dim, oup,1,1,0, bias=False),
  52. BatchNorm2d(oup),)defforward(self, x):if self.use_res_connect:return x + self.conv(x)else:return self.conv(x)classMobileNetV2(nn.Module):def__init__(self, n_class=1000, input_size=224, width_mult=1.):super(MobileNetV2, self).__init__()
  53. block = InvertedResidual
  54. input_channel =32
  55. last_channel =1280
  56. interverted_residual_setting =[# t, c, n, s[1,16,1,1],# 256, 256, 32 -> 256, 256, 16[6,24,2,2],# 256, 256, 16 -> 128, 128, 24 2[6,32,3,2],# 128, 128, 24 -> 64, 64, 32 4[6,64,4,2],# 64, 64, 32 -> 32, 32, 64 7[6,96,3,1],# 32, 32, 64 -> 32, 32, 96[6,160,3,2],# 32, 32, 96 -> 16, 16, 160 14[6,320,1,1],# 16, 16, 160 -> 16, 16, 320]assert input_size %32==0
  57. input_channel =int(input_channel * width_mult)
  58. self.last_channel =int(last_channel * width_mult)if width_mult >1.0else last_channel
  59. # 512, 512, 3 -> 256, 256, 32
  60. self.features =[conv_bn(3, input_channel,2)]for t, c, n, s in interverted_residual_setting:
  61. output_channel =int(c * width_mult)for i inrange(n):# 判断 ksize if c <96:
  62. ksize =1else:
  63. ksize =3# stride = s if i == 0 else 1if i ==0:
  64. self.features.append(block(input_channel, output_channel, s, expand_ratio=t, k_size=ksize))else:
  65. self.features.append(block(input_channel, output_channel,1, expand_ratio=t, k_size=ksize))
  66. input_channel = output_channel
  67. self.features.append(conv_1x1_bn(input_channel, self.last_channel))
  68. self.features = nn.Sequential(*self.features)
  69. self.classifier = nn.Sequential(
  70. nn.Dropout(0.2),
  71. nn.Linear(self.last_channel, n_class),)
  72. self._initialize_weights()defforward(self, x):
  73. x = self.features(x)
  74. x = x.mean(3).mean(2)
  75. x = self.classifier(x)return x
  76. def_initialize_weights(self):for m in self.modules():ifisinstance(m, nn.Conv2d):
  77. n = m.kernel_size[0]* m.kernel_size[1]* m.out_channels
  78. m.weight.data.normal_(0, math.sqrt(2./ n))if m.bias isnotNone:
  79. m.bias.data.zero_()elifisinstance(m, BatchNorm2d):
  80. m.weight.data.fill_(1)
  81. m.bias.data.zero_()elifisinstance(m, nn.Linear):
  82. n = m.weight.size(1)
  83. m.weight.data.normal_(0,0.01)
  84. m.bias.data.zero_()defload_url(url, model_dir='./model_data', map_location=None):ifnot os.path.exists(model_dir):
  85. os.makedirs(model_dir)
  86. filename = url.split('/')[-1]
  87. cached_file = os.path.join(model_dir, filename)if os.path.exists(cached_file):return torch.load(cached_file, map_location=map_location)else:return model_zoo.load_url(url,model_dir=model_dir)defmobilenetv2(pretrained=False,**kwargs):
  88. model = MobileNetV2(n_class=1000,**kwargs)if pretrained:
  89. model.load_state_dict(load_url('https://github.com/bubbliiiing/deeplabv3-plus-pytorch/releases/download/v1.0/mobilenet_v2.pth.tar'), strict=False)return model
  90. if __name__ =="__main__":
  91. model = mobilenetv2()for i, layer inenumerate(model.features):print(i, layer)

本文转载自: https://blog.csdn.net/qq_41920323/article/details/129742054
版权归原作者 qq_41920323 所有, 如有侵权,请联系我们删除。

“注意力机制——ECANet及Mobilenetv2模型应用”的评论:

还没有评论