一、介绍
ECANet(CVPR 2020)作为一种轻量级的注意力机制,其实也是通道注意力机制的一种实现形式。其论文和开源代码为:
论文地址:https://arxiv.org/abs/1910.03151
代码:https://github.com/BangguWu/ECANet
ECA模块,去除了原来SE模块中的全连接层,直接在全局平均池化之后的特征上通过一个1D卷积进行学习。
具体的讲:通过共享相同的学习参数,通过内核大小为k的1维卷积来实现通道之间的信息交互:(一维卷积和1 × 1 卷积是不同的,一维指的是1 × k 的卷积)
ECA-Net可以插入到其他CNN网络中来增强其性能,比如:插入到ResNet、MobileNetV2中。本文主要将ECA模块加入到Mobilenetv2的残差堆叠块中。
文中同样附上SENet的嵌入代码(已注释),如有需要,可进行比较;因项目需要转换caffe模型(具体torch如何转,请看之前的博文),经测试SENet虽然转换成功,但测试时所需的caffe库不支持,所以换成ECA-Net,经转换测试,可正常出结果,且效果提升大约五个点左右。
ReLU6替换为Leakyrelu,同样是因为不支持的原因(板子太老)
二、代码
eca_module.py
import torch
from torch import nn
from torch.nn.parameter import Parameter
classeca_layer(nn.Module):"""Constructs a ECA module.
Args:
channel: Number of channels of the input feature map
k_size: Adaptive selection of kernel size
"""def__init__(self, channel, k_size=3):super(eca_layer, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.conv = nn.Conv1d(1,1, kernel_size=k_size, padding=(k_size -1)//2, bias=False)
self.sigmoid = nn.Sigmoid()defforward(self, x):# feature descriptor on the global spatial information
y = self.avg_pool(x)# Two different branches of ECA module
y = self.conv(y.squeeze(-1).transpose(-1,-2)).transpose(-1,-2).unsqueeze(-1)# Multi-scale information fusion
y = self.sigmoid(y)return x * y.expand_as(x)
eca_mobilenetv2.py
import math
import os
import torch
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
from.eca_module import eca_layer
BatchNorm2d = nn.BatchNorm2d
defconv_bn(inp, oup, stride):return nn.Sequential(
nn.Conv2d(inp, oup,3, stride,1, bias=False),
BatchNorm2d(oup),# nn.ReLU6(inplace=True)
nn.LeakyReLU(0.1))defconv_1x1_bn(inp, oup):return nn.Sequential(
nn.Conv2d(inp, oup,1,1,0, bias=False),
BatchNorm2d(oup),# nn.ReLU6(inplace=True)# nn.ReLU(inplace=True)
nn.LeakyReLU(0.1))def_make_divisible(v, divisor, min_value=None):if min_value isNone:
min_value = divisor
new_v =max(min_value,int(v + divisor /2)// divisor * divisor)# Make sure that round down does not go down by more than 10%.if new_v <0.9* v:
new_v += divisor
return new_v
classh_sigmoid(nn.Module):def__init__(self, inplace=True):super(h_sigmoid, self).__init__()
self.relu = nn.ReLU6(inplace=inplace)defforward(self, x):return self.relu(x +3)/6classSELayer(nn.Module):def__init__(self, channel, reduction=4):super(SELayer, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channel, _make_divisible(channel // reduction,8)),
nn.ReLU(inplace=True),
nn.Linear(_make_divisible(channel // reduction,8), channel),
h_sigmoid())defforward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c,1,1)return x * y
classInvertedResidual(nn.Module):def__init__(self, inp, oup, stride, expand_ratio,k_size):super(InvertedResidual, self).__init__()
self.stride = stride
assert stride in[1,2]
hidden_dim =round(inp * expand_ratio)
self.use_res_connect = self.stride ==1and inp == oup
layers =[]if expand_ratio ==1:
layers.append(eca_layer(oup, k_size))
self.conv = nn.Sequential(#--------------------------------------------## 进行3x3的逐层卷积,进行跨特征点的特征提取#--------------------------------------------#
nn.Conv2d(hidden_dim, hidden_dim,3, stride,1, groups=hidden_dim, bias=False),
BatchNorm2d(hidden_dim),# nn.ReLU6(inplace=True),
nn.LeakyReLU(0.1),# SELayer(hidden_dim),#-----------------------------------## 利用1x1卷积进行通道数的调整#-----------------------------------#
nn.Conv2d(hidden_dim, oup,1,1,0, bias=False),
BatchNorm2d(oup),)else:
layers.append(eca_layer(oup, k_size))
self.conv = nn.Sequential(#-----------------------------------## 利用1x1卷积进行通道数的上升#-----------------------------------#
nn.Conv2d(inp, hidden_dim,1,1,0, bias=False),
BatchNorm2d(hidden_dim),# nn.ReLU6(inplace=True),
nn.LeakyReLU(0.1),#--------------------------------------------## 进行3x3的逐层卷积,进行跨特征点的特征提取#--------------------------------------------#
nn.Conv2d(hidden_dim, hidden_dim,3, stride,1, groups=hidden_dim, bias=False),
BatchNorm2d(hidden_dim),# SELayer(hidden_dim),# nn.ReLU6(inplace=True),
nn.LeakyReLU(0.1),#-----------------------------------## 利用1x1卷积进行通道数的下降#-----------------------------------#
nn.Conv2d(hidden_dim, oup,1,1,0, bias=False),
BatchNorm2d(oup),)defforward(self, x):if self.use_res_connect:return x + self.conv(x)else:return self.conv(x)classMobileNetV2(nn.Module):def__init__(self, n_class=1000, input_size=224, width_mult=1.):super(MobileNetV2, self).__init__()
block = InvertedResidual
input_channel =32
last_channel =1280
interverted_residual_setting =[# t, c, n, s[1,16,1,1],# 256, 256, 32 -> 256, 256, 16[6,24,2,2],# 256, 256, 16 -> 128, 128, 24 2[6,32,3,2],# 128, 128, 24 -> 64, 64, 32 4[6,64,4,2],# 64, 64, 32 -> 32, 32, 64 7[6,96,3,1],# 32, 32, 64 -> 32, 32, 96[6,160,3,2],# 32, 32, 96 -> 16, 16, 160 14[6,320,1,1],# 16, 16, 160 -> 16, 16, 320]assert input_size %32==0
input_channel =int(input_channel * width_mult)
self.last_channel =int(last_channel * width_mult)if width_mult >1.0else last_channel
# 512, 512, 3 -> 256, 256, 32
self.features =[conv_bn(3, input_channel,2)]for t, c, n, s in interverted_residual_setting:
output_channel =int(c * width_mult)for i inrange(n):# 判断 ksize 值if c <96:
ksize =1else:
ksize =3# stride = s if i == 0 else 1if i ==0:
self.features.append(block(input_channel, output_channel, s, expand_ratio=t, k_size=ksize))else:
self.features.append(block(input_channel, output_channel,1, expand_ratio=t, k_size=ksize))
input_channel = output_channel
self.features.append(conv_1x1_bn(input_channel, self.last_channel))
self.features = nn.Sequential(*self.features)
self.classifier = nn.Sequential(
nn.Dropout(0.2),
nn.Linear(self.last_channel, n_class),)
self._initialize_weights()defforward(self, x):
x = self.features(x)
x = x.mean(3).mean(2)
x = self.classifier(x)return x
def_initialize_weights(self):for m in self.modules():ifisinstance(m, nn.Conv2d):
n = m.kernel_size[0]* m.kernel_size[1]* m.out_channels
m.weight.data.normal_(0, math.sqrt(2./ n))if m.bias isnotNone:
m.bias.data.zero_()elifisinstance(m, BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()elifisinstance(m, nn.Linear):
n = m.weight.size(1)
m.weight.data.normal_(0,0.01)
m.bias.data.zero_()defload_url(url, model_dir='./model_data', map_location=None):ifnot os.path.exists(model_dir):
os.makedirs(model_dir)
filename = url.split('/')[-1]
cached_file = os.path.join(model_dir, filename)if os.path.exists(cached_file):return torch.load(cached_file, map_location=map_location)else:return model_zoo.load_url(url,model_dir=model_dir)defmobilenetv2(pretrained=False,**kwargs):
model = MobileNetV2(n_class=1000,**kwargs)if pretrained:
model.load_state_dict(load_url('https://github.com/bubbliiiing/deeplabv3-plus-pytorch/releases/download/v1.0/mobilenet_v2.pth.tar'), strict=False)return model
if __name__ =="__main__":
model = mobilenetv2()for i, layer inenumerate(model.features):print(i, layer)
版权归原作者 qq_41920323 所有, 如有侵权,请联系我们删除。