LLaMA-Factory是一个相当优秀的微调工具。这里提供一个dockerfile和一个train脚本,用于多卡微调,供大家参考。
Dockerfile
FROM nvidia/cuda:12.1.0-cudnn8-devel-ubuntu22.04
# python3
RUN apt-get update &&apt-getinstall-y python3.10 python3-pip
# torch
COPY torch-2.2.0+cu121-cp310-cp310-linux_x86_64.whl torch-2.2.0+cu121-cp310-cp310-linux_x86_64.whl
RUN pip3 install torch-2.2.0+cu121-cp310-cp310-linux_x86_64.whl
# llama factory requirements
RUN pip3 installtransformers==4.37.2 datasets==2.16.1 accelerate==0.25.0 peft==0.7.1 trl==0.7.10 gradio==3.50.2 \
deepspeed modelscope ipython scipy einops sentencepiece protobuf jieba rouge-chinese nltk sse-starlette matplotlib \
--no-cache-dir -i https://pypi.tuna.tsinghua.edu.cn/simple
# unsloth
RUN apt-getinstall-ygit
RUN pip install--upgrade pip
RUN pip install triton --no-cache-dir -i https://pypi.tuna.tsinghua.edu.cn/simple
RUN pip install"unsloth[cu121_ampere_torch220] @ git+https://github.com/unslothai/unsloth.git"
train.sh
docker run \-it\--rm\--name llm \--network=host \
--shm-size 32G \--gpus all \-v /home/[user_name]/.cache/modelscope/hub/:/root/.cache/modelscope/hub/ \-v /home/[user_name]/LLaMA-Factory/:/LLaMA-Factory/ \-v /home/[user_name]/.cache/huggingface/accelerate/default_config.yaml:/root/.cache/huggingface/accelerate/default_config.yaml \-w /LLaMA-Factory \-eUSE_MODELSCOPE_HUB=1\
llm:v1.1 \
accelerate launch src/train_bash.py \--stage sft \--do_train True \--model_name_or_path ZhipuAI/chatglm3-6b \--finetuning_type lora \--use_unsloth True \--template chatglm3 \--dataset_dir data \--dataset alpaca_gpt4_zh \--cutoff_len512\--learning_rate 5e-05 \--num_train_epochs2.0\--max_samples8000\--per_device_train_batch_size1\--gradient_accumulation_steps2\--lr_scheduler_type cosine \--max_grad_norm1.0\--logging_steps5\--save_steps1000\--warmup_steps0\--lora_rank8\--lora_dropout0.1\--lora_target query_key_value \--output_dir saves/ChatGLM3-6B-Chat/lora/train_20240212 \--fp16 True \--plot_loss True
注意事项:
- –shm-size 32G --gpus all 这两个参数是必要的
- –use_unsloth True 可以调用unsloth实现加速
- 需要保证–gradient_accumulation_steps 2在deepspeed配置中的一致性
default_config.yaml
compute_environment: LOCAL_MACHINE
debug: false# distributed_type: MULTI_GPU
deepspeed_config:
deepspeed_multinode_launcher: standard
gradient_accumulation_steps: 2
offload_optimizer_device: none
offload_param_device: none
zero3_init_flag: false
zero3_save_16bit_model: false
zero_stage: 2
distributed_type: DEEPSPEED
downcast_bf16: 'no'
gpu_ids: all
machine_rank: 0
main_training_function: main
mixed_precision: bf16
num_machines: 1
num_processes: 2
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false
感谢以下两篇博客:
单卡 3 小时训练专属大模型 Agent:基于 LLaMA Factory 实战
Accelerate 0.24.0文档 二:DeepSpeed集成
本文转载自: https://blog.csdn.net/weixin_45385568/article/details/136107301
版权归原作者 愤怒的虾球 所有, 如有侵权,请联系我们删除。
版权归原作者 愤怒的虾球 所有, 如有侵权,请联系我们删除。