大家好,我是 同学小张,持续学习C++进阶知识和AI大模型应用实战案例,持续分享,欢迎大家点赞+关注,共同学习和进步。
上篇文章我们通过一个简单的例子,学习了LlamaIndex的安装和基本使用,使用 LlamaIndex 构建了一个简单的RAG问答系统。今天我们开始系统化学习,首先看一下LlamaIndex的Load部分。Load部分负责文件数据链接。
文章目录
0. 文件类型加载器:SimpleDirectoryReader
上篇文章代码的一开始,我们就使用了这个Reader:
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
# 使用SimpleDirectoryReader从指定路径加载数据
documents = SimpleDirectoryReader("D:\GitHub\LEARN_LLM\LlamaIndex\data").load_data()
这是 LlamaIndex 中最容易使用的一个文件夹加载器。它会读取传入的文件夹路径中的所有文件,可以读取各种格式,包括Markdown、PDF、Word、PowerPoint、图像、音频和视频等。
来看下其具体集成的类型:
参考:https://llamahub.ai/l/readers/llama-index-readers-file?from=
from llama_index.core import SimpleDirectoryReader
from llama_index.readers.fileimport(
DocxReader,
HWPReader,
PDFReader,
EpubReader,
FlatReader,
HTMLTagReader,
ImageCaptionReader,
ImageReader,
ImageVisionLLMReader,
IPYNBReader,
MarkdownReader,
MboxReader,
PptxReader,
PandasCSVReader,
VideoAudioReader,
UnstructuredReader,
PyMuPDFReader,
ImageTabularChartReader,
XMLReader,
PagedCSVReader,
CSVReader,
RTFReader,)# PDF Reader with `SimpleDirectoryReader`
parser = PDFReader()
file_extractor ={".pdf": parser}
documents = SimpleDirectoryReader("./data", file_extractor=file_extractor
).load_data()# Docx Reader example
parser = DocxReader()
file_extractor ={".docx": parser}
documents = SimpleDirectoryReader("./data", file_extractor=file_extractor
).load_data()# HWP Reader example
parser = HWPReader()
file_extractor ={".hwp": parser}
documents = SimpleDirectoryReader("./data", file_extractor=file_extractor
).load_data()# Epub Reader example
parser = EpubReader()
file_extractor ={".epub": parser}
documents = SimpleDirectoryReader("./data", file_extractor=file_extractor
).load_data()# Flat Reader example
parser = FlatReader()
file_extractor ={".txt": parser}
documents = SimpleDirectoryReader("./data", file_extractor=file_extractor
).load_data()# HTML Tag Reader example
parser = HTMLTagReader()
file_extractor ={".html": parser}
documents = SimpleDirectoryReader("./data", file_extractor=file_extractor
).load_data()# Image Reader example
parser = ImageReader()
file_extractor ={".jpg": parser,".jpeg": parser,".png": parser,}# Add other image formats as needed
documents = SimpleDirectoryReader("./data", file_extractor=file_extractor
).load_data()# IPYNB Reader example
parser = IPYNBReader()
file_extractor ={".ipynb": parser}
documents = SimpleDirectoryReader("./data", file_extractor=file_extractor
).load_data()# Markdown Reader example
parser = MarkdownReader()
file_extractor ={".md": parser}
documents = SimpleDirectoryReader("./data", file_extractor=file_extractor
).load_data()# Mbox Reader example
parser = MboxReader()
file_extractor ={".mbox": parser}
documents = SimpleDirectoryReader("./data", file_extractor=file_extractor
).load_data()# Pptx Reader example
parser = PptxReader()
file_extractor ={".pptx": parser}
documents = SimpleDirectoryReader("./data", file_extractor=file_extractor
).load_data()# Pandas CSV Reader example
parser = PandasCSVReader()
file_extractor ={".csv": parser}# Add other CSV formats as needed
documents = SimpleDirectoryReader("./data", file_extractor=file_extractor
).load_data()# PyMuPDF Reader example
parser = PyMuPDFReader()
file_extractor ={".pdf": parser}
documents = SimpleDirectoryReader("./data", file_extractor=file_extractor
).load_data()# XML Reader example
parser = XMLReader()
file_extractor ={".xml": parser}
documents = SimpleDirectoryReader("./data", file_extractor=file_extractor
).load_data()# Paged CSV Reader example
parser = PagedCSVReader()
file_extractor ={".csv": parser}# Add other CSV formats as needed
documents = SimpleDirectoryReader("./data", file_extractor=file_extractor
).load_data()# CSV Reader example
parser = CSVReader()
file_extractor ={".csv": parser}# Add other CSV formats as needed
documents = SimpleDirectoryReader("./data", file_extractor=file_extractor
).load_data()
1. LlamaHub 中的加载器
除了上面的读取文件之外,实际生活中还有很多地方可以获取数据,例如GitHub,网页,数据库等。这些数据加载器在 LlamaHub 中实现,可以按需使用。下图是 LlamaHub 中加载器列表:
1.1 使用方式
首先得安装相应的包,例如使用DatabaseReader:
pip install llama-index-readers-google
# 或者在使用之前加下面这一行应该也行:# from llama_index.core import download_loader
否则会报错:
然后就可以正常使用了:
from llama_index.core import download_loader
from llama_index.readers.database import DatabaseReader
reader = DatabaseReader(
scheme=os.getenv("DB_SCHEME"),
host=os.getenv("DB_HOST"),
port=os.getenv("DB_PORT"),
user=os.getenv("DB_USER"),
password=os.getenv("DB_PASS"),
dbname=os.getenv("DB_NAME"),)
query ="SELECT * FROM users"
documents = reader.load_data(query=query)
2. 可以直接将文字转换成 LlamaIndex 需要的 Document 结构
from llama_index.core import Document
doc = Document(text="text")
3. 文档内容转换
加载数据后,下一步是将数据进行处理和转换。这些转换包括分块、提取元数据和对每个块进行向量化,从而确保大模型能够检索数据。
3.1 一步到位的简单方法
其中最简单的转换做法,是上篇文章中我们使用的:
from_documents
方法。
from llama_index.core import VectorStoreIndex
vector_index = VectorStoreIndex.from_documents(documents)
vector_index.as_query_engine()
from_documents()方法,接受一个Document对象数组,并自动解析和拆分它们。
3.2 自定义转换
有时候我们需要自己控制分块等这些转换的逻辑。有以下两种方式:
(1)使用 from_documents 的 transformations 参数,传入一个自定义的分块器。
from llama_index.core.node_parser import SentenceSplitter
text_splitter = SentenceSplitter(chunk_size=512, chunk_overlap=10)# per-index
index = VectorStoreIndex.from_documents(
documents, transformations=[text_splitter])
(2)使用全局设置,设置默认的分块器。
from llama_index.core.node_parser import SentenceSplitter
text_splitter = SentenceSplitter(chunk_size=512, chunk_overlap=10)# globalfrom llama_index.core import Settings
Settings.text_splitter = text_splitter
# per-index
index = VectorStoreIndex.from_documents(documents)
4. 总结
本文我们介绍了 LlamaIndex 中加载器,以及如何使用它们。LlamaIndex提供了内置的文件加载器,同时也支持 LlamHub 中提供的各种其它类型加载器。
文章最后,简单介绍了下 LlamaIndex 中如何将加载到的文档数据转换成索引。
5. 参考
- https://docs.llamaindex.ai/en/stable/understanding/loading/loading/
- https://docs.llamaindex.ai/en/stable/understanding/loading/llamahub/
如果觉得本文对你有帮助,麻烦点个赞和关注呗 ~~~
- 大家好,我是 同学小张,持续学习C++进阶知识和AI大模型应用实战案例
- 欢迎 点赞 + 关注 👏,持续学习,持续干货输出。
- +v: jasper_8017 一起交流💬,一起进步💪。
- 微信公众号也可搜【同学小张】 🙏
本站文章一览:
版权归原作者 同学小张 所有, 如有侵权,请联系我们删除。