0


秒懂算法 | 基于主成分分析法、随机森林算法和SVM算法的人脸识别问题

本文的任务与手写数字识别非常相似,都是基于图片的多分类任务,也都是有监督的。

01、数据集介绍与分析

ORL人脸数据集共包含40个不同人的400张图像,是在1992年4月至1994年4月期间由英国剑桥的Olivetti研究实验室创建。

此数据集下包含40个目录,每个目录下有10张图像,每个目录表示一个不同的人。所有的图像是以PGM格式存储,灰度图,图像大小宽度为92,高度为112。对每一个目录下的图像,这些图像是在不同的时间、不同的光照、不同的面部表情(睁眼/闭眼,微笑/不微笑)和面部细节(戴眼镜/不戴眼镜)环境下采集的。所有的图像是在较暗的均匀背景下拍摄的,拍摄的是正脸(有些带有略微的侧偏)。

数据集链接:

https://pan.baidu.com/s/1hxeo38rJJFstLDG4lg67SA

提取码:8m9i

图1 数据集可视化结果

如图1所示,在该数据集中,每个人有10张照片,这10张照片


本文转载自: https://blog.csdn.net/qq_41640218/article/details/129354415
版权归原作者 TiAmo zhang 所有, 如有侵权,请联系我们删除。

“秒懂算法 | 基于主成分分析法、随机森林算法和SVM算法的人脸识别问题”的评论:

还没有评论