def LMDI(*,data_t:object, data_0:object, yt:float, y0:float) -> object:
"""
Args:
data_t:t期结果值,example
data_0:基期结果值
yt: t期结果值
y0: 基期结果值
Returns:
object['x']['key'] 代表x的key,x为自变量
object['x']['key']['x0']: 基期值
object['x']['key']['xt']: t期值
object['x']['key']['change']: 变动值
object['x']['key']['changeRate']: 变动率,即同比值
object['x']['key']['contribute']: LMDI计算得贡献度
object['x']['key']['contributeRate']: 基期贡献率, LMDI计算得贡献度 / y0
object['x']['key']['changeContributeRate']: 变动值贡献率, LMDI计算得贡献度 / object['y']['change']
object['y'] y代表因变量
object['y']['y0']: 基期值
object['y']['yt']: 本期值
object['y']['change']: 变动值
object['y']['changeRate']: 变动率,即同比值
Raises:
ValueError: data_t/data_0的内容相乘不等于yt/y0, data_t和data_0的key名称及数量不相等
"""
from functools import reduce
import numpy as np
# 对参数进行校验
data_0_comp = reduce(lambda x,y:x*y,data_0.values())
data_t_comp = reduce(lambda x,y:x*y,data_t.values())
if ( data_t_comp - yt > 1 or data_t_comp - yt <-1) : # 考虑到float的计算精度,这里放了gap值不能大于1
raise ValueError('data_t的内容相乘不等于tt')
elif (data_0_comp - y0 > 1 or data_0_comp - y0 <-1):
raise ValueError('data_0的内容相乘不等于tt')
elif data_t.keys() != data_0.keys():
raise ValueError('data_t和data_0的key名称及数量不相等')
def Delta_XX(*,yt,y0,xt,x0):
# 计算LMDI中每个参数的Δ值
def L(yt,y0):
if yt == y0:
return 0
else:
return (yt-y0)/(np.log(yt) - np.log(y0))
return L(yt,y0)*np.log(xt/x0)
x = {}
for key in data_t.keys():
x[key] = {}
x[key]['x0'] = data_0[key]
x[key]['xt'] = data_t[key]
x[key]['change'] = data_t[key]- data_0[key]
x[key]['changeRate'] = 0 if data_0[key]==0 or data_0[key]==0 or data_0[key]=="" else (data_t[key]- data_0[key]) / data_0[key]
x[key]['contribute'] = Delta_XX(yt=yt,y0=y0,xt=data_t[key], x0=data_0[key])
x[key]['contributeRate'] = 0 if y0==0 else x[key]['contribute'] / y0
x[key]['changeContributeRate'] = 0 if yt-y0 == 0 else x[key]['contribute'] / (yt-y0)
y = {}
y['y0'] = y0
y['yt'] = yt
y['change'] = yt - y0
y['changeRate'] = 0 if yt ==0 or y0==0 else (yt-y0)/yt
result = {
"x":x,
"y":y
}
return result
# 计算结果
y0 = 1078122 # 基期结果值
yt = 1469699 # t期结果值
data_t = {
"uv":19087,
"m": 0.25,
"d": 308
} # t期分解值集合
data_0 = {
"uv":20032,
"m": 0.23,
"d": 234
} # 基期分解值集合
LMDI(data_t=data_t,data_0=data_0,yt=yt,y0=y0)
参考:LMDI 理论推导详解【从理论到Python-MATLAB实现(编程实现)】_春风惹人醉的博客-CSDN博客_lmdi模型python实现
本文转载自: https://blog.csdn.net/fzcg1994/article/details/128922961
版权归原作者 fzcg1994 所有, 如有侵权,请联系我们删除。
版权归原作者 fzcg1994 所有, 如有侵权,请联系我们删除。