0


YOLOv5 6.0/6.1结合ASFF

YOLOv5 6.0/6.1结合ASFF


前言

YOLO小白纯干货分享!!!


一、主要修改代码

在这里插入图片描述

二、使用步骤

1. models/common.py:加入要修改的代码, 类ASFFV5 class ASFFV5(nn.Module):

classASFFV5(nn.Module):def__init__(self, level, multiplier=1, rfb=False, vis=False, act_cfg=True):"""
        ASFF version for YoloV5 only.
        Since YoloV5 outputs 3 layer of feature maps with different channels
        which is different than YoloV3
        normally, multiplier should be 1, 0.5
        which means, the channel of ASFF can be 
        512, 256, 128 -> multiplier=1
        256, 128, 64 -> multiplier=0.5
        For even smaller, you gonna need change code manually.
        """super(ASFFV5, self).__init__()
        self.level = level
        self.dim =[int(1024*multiplier),int(512*multiplier),int(256*multiplier)]#print("dim:",self.dim)
        
        self.inter_dim = self.dim[self.level]if level ==0:
            self.stride_level_1 = Conv(int(512*multiplier), self.inter_dim,3,2)#print(self.dim)
            self.stride_level_2 = Conv(int(256*multiplier), self.inter_dim,3,2)
                
            self.expand = Conv(self.inter_dim,int(1024*multiplier),3,1)elif level ==1:
            self.compress_level_0 = Conv(int(1024*multiplier), self.inter_dim,1,1)
            self.stride_level_2 = Conv(int(256*multiplier), self.inter_dim,3,2)
            self.expand = Conv(self.inter_dim,int(512*multiplier),3,1)elif level ==2:
            self.compress_level_0 = Conv(int(1024*multiplier), self.inter_dim,1,1)
            self.compress_level_1 = Conv(int(512*multiplier), self.inter_dim,1,1)
            self.expand = Conv(self.inter_dim,int(256*multiplier),3,1)# when adding rfb, we use half number of channels to save memory
        compress_c =8if rfb else16

        self.weight_level_0 = Conv(
            self.inter_dim, compress_c,1,1)
        self.weight_level_1 = Conv(
            self.inter_dim, compress_c,1,1)
        self.weight_level_2 = Conv(
            self.inter_dim, compress_c,1,1)

        self.weight_levels = Conv(
            compress_c*3,3,1,1)
        self.vis = vis

    defforward(self, x_level_0, x_level_1, x_level_2):#s,m,l"""
        # 128, 256, 512
        512, 256, 128
        from small -> large
        """# print('x_level_0: ', x_level_0.shape)# print('x_level_1: ', x_level_1.shape)# print('x_level_2: ', x_level_2.shape)
        x_level_0=x[2]
        x_level_1=x[1]
        x_level_2=x[0]if self.level ==0:
            level_0_resized = x_level_0
            level_1_resized = self.stride_level_1(x_level_1)

            level_2_downsampled_inter = F.max_pool2d(
                x_level_2,3, stride=2, padding=1)
            
            level_2_resized = self.stride_level_2(level_2_downsampled_inter)#print('X——level_0: ', level_2_downsampled_inter.shape)elif self.level ==1:
            level_0_compressed = self.compress_level_0(x_level_0)
            level_0_resized = F.interpolate(
                level_0_compressed, scale_factor=2, mode='nearest')
            level_1_resized = x_level_1
            level_2_resized = self.stride_level_2(x_level_2)elif self.level ==2:
            level_0_compressed = self.compress_level_0(x_level_0)
            level_0_resized = F.interpolate(
                level_0_compressed, scale_factor=4, mode='nearest')
            x_level_1_compressed = self.compress_level_1(x_level_1)
            level_1_resized = F.interpolate(
                x_level_1_compressed, scale_factor=2, mode='nearest')
            level_2_resized = x_level_2

        # print('level: {}, l1_resized: {}, l2_resized: {}'.format(self.level,#  level_1_resized.shape, level_2_resized.shape))
        level_0_weight_v = self.weight_level_0(level_0_resized)
        level_1_weight_v = self.weight_level_1(level_1_resized)
        level_2_weight_v = self.weight_level_2(level_2_resized)# print('level_0_weight_v: ', level_0_weight_v.shape)# print('level_1_weight_v: ', level_1_weight_v.shape)# print('level_2_weight_v: ', level_2_weight_v.shape)

        levels_weight_v = torch.cat((level_0_weight_v, level_1_weight_v, level_2_weight_v),1)
        levels_weight = self.weight_levels(levels_weight_v)
        levels_weight = F.softmax(levels_weight, dim=1)

        fused_out_reduced = level_0_resized * levels_weight[:,0:1,:,:]+\
            level_1_resized * levels_weight[:,1:2,:,:]+\
            level_2_resized * levels_weight[:,2:,:,:]

        out = self.expand(fused_out_reduced)if self.vis:return out, levels_weight, fused_out_reduced.sum(dim=1)else:return out

2. models/yolo.py:添加 类ASFF_Detect

然后在yolo.py 中 Detect 类下面,添加一个ASFF_Detect类

classASFF_Detect(nn.Module):#add ASFFV5 layer and Rfb 
    stride =None# strides computed during build
    export =False# onnx exportdef__init__(self, nc=80, anchors=(), multiplier=0.5,rfb=False,ch=()):# detection layersuper(ASFF_Detect, self).__init__()
        self.nc = nc  # number of classes
        self.no = nc +5# number of outputs per anchor
        self.nl =len(anchors)# number of detection layers
        self.na =len(anchors[0])//2# number of anchors
        self.grid =[torch.zeros(1)]* self.nl  # init grid
        self.l0_fusion = ASFFV5(level=0, multiplier=multiplier,rfb=rfb)
        self.l1_fusion = ASFFV5(level=1, multiplier=multiplier,rfb=rfb)
        self.l2_fusion = ASFFV5(level=2, multiplier=multiplier,rfb=rfb)
        a = torch.tensor(anchors).float().view(self.nl,-1,2)
        self.register_buffer('anchors', a)# shape(nl,na,2)
        self.register_buffer('anchor_grid', a.clone().view(self.nl,1,-1,1,1,2))# shape(nl,1,na,1,1,2)
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na,1)for x in ch)# output conv

接着在 yolo.py的parse_model 中把函数放到模型的代码里:
(大概在283行左右)

if m in[Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP,CBAM,ResBlock_CBAM,
                 C3]:
            c1, c2 = ch[f], args[0]if c2 != no:# if not output
                c2 = make_divisible(c2 * gw,8)

            args =[c1, c2,*args[1:]]if m in[BottleneckCSP, C3]:
                args.insert(2, n)# number of repeats
                n =1elif m is nn.BatchNorm2d:
            args =[ch[f]]elif m is Concat:
            c2 =sum([ch[x]for x in f])elif m is ASFF_Detect:
            args.append([ch[x]for x in f])ifisinstance(args[1],int):# number of anchors
                args[1]=[list(range(args[1]*2))]*len(f)elif m is Contract:
            c2 = ch[f]* args[0]**2elif m is Expand:
            c2 = ch[f]// args[0]**2elif m is ASFFV5:
            c2=args[1]else:
            c2 = ch[f]

3.models/yolov5s-asff.yaml

在models文件夹下新建对应的yolov5s-asff.yaml 文件
然后将yolov5s.yaml的内容复制过来,将 head 部分的最后一行进行修改;

[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) ]

修改成下面:

[[17,20,23],1, ASFF_Detect,[nc, anchors]],# Detect(P3, P4, P5)]

4.查看网络结构

修改 models/yolo.py --cfg models/yolov5s-asff.yaml
在这里插入图片描述
接下来run yolo.py 即可查看网络结构
在这里插入图片描述

5.将train.py 中 --cfg中的 yaml 文件修改成本文文件即可,开始训练

总结

本人在多个数据集上做了大量实验,针对不同的数据集效果不同,需要大家进行实验。有效果有提升的情况占大多数。

最后,希望能互粉一下,做个朋友,一起学习交流。


本文转载自: https://blog.csdn.net/m0_52587978/article/details/127639341
版权归原作者 zhouyq1108 所有, 如有侵权,请联系我们删除。

“YOLOv5 6.0/6.1结合ASFF”的评论:

还没有评论