0


Mac本地部署Stable Diffusion,超详细,含踩坑点(AI 绘画保姆级教程)

一、 引言

相继在两个云平台 KaggleAutoDL 上部署了 Stable Diffusion 后,这周决定再在 Mac 本地部署一下 Stable Diffusion!

其实看 Stable Diffusion WebUI 的 Github 官网,步骤还是比较清晰简单的。

但实际部署过程中,确实还是遇到了不少问题,所以顺便将踩过的坑一一记录了下来,应该涵盖了大部分同学都会遇到的问题,是的,全帮你们填平了,有的问题还给出了多种解决方案。

所以,Mac 党的朋友,想在本地部署 Stable Diffusion,拿着这份保姆级教程,直接冲就完事!

二、 Mac 的配置

MacBook Pro(2021 年)

芯片:Apple M1 Pro

核总数:8 + 14

内存:16GB

存储:512GB

macOS:Ventura 13.3.1

这个配置下,出图的效率怎么样呢

文章的第五部分「性能测试」中,基于同一模型、不同采样方法,在进行了多组测试后,出图效率简单记录了一下,大家可以参考~

三、 安装步骤

1. 安装 Homebrew

方式一:官方安装(可能会因网络问题导致失败)

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

输入

brew -v

验证 Homebrew 是否安装成功:出现版本号说明 Homebrew 已经安装成功了。

补充知识:

  • Homebrew 官网:https://brew.sh/
  • 通过官网方式安装的,卸载 Homebrew 的方式如下(注意:如果是国内镜像安装的,不用这个命令卸载):
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/uninstall.sh)"

方式二:国内镜像安装

如果用第一种方式输入命令没有反应,或者是安装过程中出错了,多数是因为网络问题。可以用国内镜像进行 Homebrew 的安装。

/bin/bash -c "$(curl -fsSL https://gitee.com/cunkai/HomebrewCN/raw/master/Homebrew.sh)"

Core、Cask、services 是 Homebrew 的其他组件,应该不是部署 Stable Diffusion WebUI 必须的。为了保险起见,这里直接都装了。

有些电脑 xcode 和 git 混乱,再运行一次,此处如果有 error 正常。

安装成功后,需要重启终端或者运行

source /Users/your_user_name/.zprofile

才能生效。

输入

brew -v

验证 Homebrew 是否安装成功:出现版本号说明 Homebrew 已经安装成功了。

补充知识

  • 如果之前安装过 Homebrew,会将之前的 Homebrew 备份在桌面的 Old_Homebrew 文件夹里。如果里面没有你需要的可以删除。
  • 常用命令- 查看版本:brew -v- 更新 brew 版本:brew update- 查找:brew search xxx(其中 xxx 替换为要查找的关键字)- 安装:brew install xxx- 查看本地软件库列表:brew ls
  • 卸载 Homebrew 如果是通过国内镜像安装的 Homebrew,用这个命令卸载:
/bin/zsh -c "$(curl -fsSL https://gitee.com/cunkai/HomebrewCN/raw/master/HomebrewUninstall.sh)"
  • 安装位置 在 Mac M1 上,Homebrew 的安装位置不是在以前的 /usr/local/,而是在 /opt/homebrew,这个大家注意。
  • 如果安装过程中还遇到了其他问题,可以看文章的第四部分 可能会遇到的问题,看看有没有解释。

2. 安装 Python 等环境依赖

cmake、protobuf、rust、python@3.10、git、wget,这些都是在后面安装 Stable Diffusion WebUI 时需要用到的依赖,这里通过一条命令直接安装了。

brew install cmake protobuf rust [email protected] git wget

Stable Diffusion WebUI 的 github 中建议使用 3.10.6,因为高版本的 Python 不支持 torch:

Install Python 3.10.6 (Newer version of Python does not support torch), checking “Add Python to PATH”.

文章写于 2023 年 7 月,后续应该会支持吧~

3. 克隆

上一步执行成功后,我们进行 Stable Diffusino WebUI 的克隆。

git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui

这一步可能会遇到下载不下来,或者下载过程中出错的问题,可以看文章的第四部分 可能会遇到的问题,看看有没有解释。

如果依然没有解决,直接,干脆,进到 SDW Github 主页,直接下载 Zip 到本地,然后解压就好了。

4. 下载模型

这里包括三大类:大模型、Lora 模型以及 VAE 模型。(当然还有其他细分小模型,后续介绍)

这一步可以先扔一个大模型上去,后续有需要可以再慢慢下载其他的。

不想自己下载的话,可以找我要网盘链接。

大模型

放在 stable-diffusion-webui/models/Stable-diffusion 下面

文件后缀:ckpt 或者 safetensors

Lora 模型

放在 stable-diffusion-webui/models/Lora 下面(在没有执行 ./webui.sh 前,是没有 Lora 这个目录的,可以先不放)

VAE 模型

Variational Auto Encoder

可以简单理解为滤镜

放在 stable-diffusion-webui/models/VAE 下面

下载方式一:从 C 站下载(需要特殊网络)

选中「Models」-「筛选」- 选择「Model types」(是大模型、还是 LoRA、还是 VAE等) - 然后选择一个模型点进去。

如果知道要下载的模型的名称的话,也可以直接在搜索框搜索模型名字,然后点进模型。

直接点「Download」按钮进行下载。

下载方式二:从 huggingface 下载

如果登不上 C 站,可以试试 huggingface,方式也比较简单。

选择「Text-to-Image」,按下载量排序,我们选第一个下载量最多的,然后点进去。

切换到「Files and versions」,下面四个后缀为 satetensors 或 ckpt 的就是大模型了,随意下载一个就好。

其中 v1-5-pruned-emaonly 比较小,4 个多 GB,需要的显存少,适合于推理。

v1-5-pruned 比较小,7个多 GB,需要的更多的显存,适合于微调。

5. 启动 WebUI

进到 Stable Diffusion WebUI 对应的安装目录:

 cd stable-diffusion-webui

启动 Stable Diffusion WebUI:

./webui.sh

第一次启动,会下载一些组件库和依赖,可能会比较慢,大家耐心等待。

注意

如果上一步没有下载模型,这里也会自动帮我们下载一个默认的模型。因为大模型一般都好几个 GB,下起来比较慢,所以推荐大家还是在上一步中自己先将模型下载下来(至少放一个大模型进去,这样这一步就不会再自动去下模型了)。

当然出错最多的也是在启动 WebUI 这个过程。这个过程中会遇到各种各样的报错。我们需要多次停下、解决、再重新执行

./webui.sh

不过不用担心之前的安装都白费了,因为它会从你上次安装到的地方接着往下安装。

如果安装过程中报错了,可以看文章的第四部分「可能会遇到的问题」,看看有没有相应的解释。

当出现 Running on local URL: http://127.0.0.1:7860 的时候,说明 Stable Diffusion WebUI 已经启动好了。

在浏览器中输入 http://127.0.0.1:7860 就可以看到 Stable Diffusion WebUI 的界面了。

温馨提示

  1. 在运行过程中,不要关闭 Terminal,否则页面就打不开了。
  2. 下次再启动,进到 Stable Diffusion WebUI 对应的目录,执行 ./webui.sh 即可。
  3. 如果安装过程中报错了,可以看文章的第四部分「可能会遇到的问题」,看看有没有解释。

四、 可能会遇到的问题

1. 用国内镜像安装 Homebrew 可能出现的问题

问题描述

解决

大概翻译一下,意思是说,在 “/opt/homebrew/Library/Taps/homebrew/homebrew-core” 的仓库中检测到可疑的所有权,若要为此目录添加异常,请调用:

git config --global --add safe.directory /opt/homebrew/Library/Taps/homebrew/homebrew-core。

下面另一个错误,也是类似的意思。所以我们只需要按照上面的提示,在命令行中输入这两行,就完美解决了。当再执行 brew -v 就不报错了!

git config --global --add safe.directory /opt/homebrew/Library/Taps/homebrew/homebrew-core
git config --global --add safe.directory /opt/homebrew/Library/Taps/homebrew/homebrew-cask

2. HTTP/2 stream 1 was not closed cleanly before end of the underlying stream

问题描述

在 git clone 的时候报:

致命错误:无法访问 ‘https://github.com/AUTOMATIC1111/stable-diffusion-webui/’:HTTP/2 stream 1 was not closed cleanly before end of the underlying stream

解决:将通信协议改成 http/1.1

git config --global http.version HTTP/1.1

将通信协议改成 http/1.1 之后,发现可以正常下载了。

3. Couldn’t install torch.

在执行完

./webui.sh

后报 “RuntimeError: Couldn’t install torch.”

在 modules/launch_utils.py 中看到了这段注释:

这段注释是说,如果遇到了 “RuntimeError: Couldn’t install torch.” 或者其他问题,可能是 Python 版本的问题,升级或者降级到 3.10 的最新版本,然后删掉 WebUI 目录下的 venv 目录再重试。

但是上面我们明明执行过

brew install cmake protobuf rust [email protected] git wget

这个命令,其中安装了 Python 3.10 呀。按理说不应该呀。

怀着怀疑的态度我在命令行里输入

python3 -V

进行查看。

咦,一看不得了,这版本咋是 3.9.6?

这个 3.9 的 Python 版本,应该是 Mac 自带的 Python。可能就是因为这个原因导致启动时下载库出错。

于是又从 Python 官网下载了 Python 3.10.10 这个版本。按提示傻瓜式安装就好了。之后还配置了一下环境变量。

# 编辑 ~/.bash_profile
vim ~/.bash_profile

文件中加入这三行

PATH="/opt/homebrew/bin/:${PATH}"
export PATH=${PATH}
alias python="/opt/homebrew/bin/python3.10"
# 使配置生效
source ~/.bash_profile

这时版本就成 3.10.10 了。

然后删掉 WebUI 目录下的 venv 目录,再执行

./webui.sh

,终于不报错了!就是下的有些慢~

4. Couldn’t install gfpgan.

在执行完

./webui.sh

后报 “RuntimeError: Couldn’t install gfpgan.”

其实是因为没有下载下来 gfpgan。我们可以从报错信息中找到下载链接,如下图中横线部分,然后 copy 这个链接到浏览器中进行下载,然后将下载好的 zip 文件加压,并将目录名改成 GFPGAN,然后拖到 stable-diffusion-webui 这个目录下就好了。当再次执行

./webui.sh

时,发现已经跨过 GFPGAN,继续下载其他依赖了。完美解决!

5. Couldn’t install clip.

在执行完

./webui.sh

后报 “RuntimeError: Couldn’t install clip.”

可以手动下载后安装,就像解决 “Couldn’t install gfpgan” 这个问题一样。但是这里我们换一种解决方式。

打开 modules/launch_utils.py,搜索 https://github.com/ ,在每一处前面都加上 https://ghproxy.com/ ,加完后是这样的 https://ghproxy.com/https://github.com/xxxxx ,如下图。

一共是 7 处,修改完成后保存。再执行

./webui.sh

,就没有问题了。

为什么这里不用上面解决 gfpgan 的手动下载的方式呢?

prepare_environment()

这个方法里,一共定义了 7 处下载地址,如果不用添加代理的方式,大概率接下来在下载 K-diffusion、CodeFormer、BLIP 的时候,也是会报错的。所以这里一起改掉,万事大吉!

这种方法也可以解决以下报错:

Couldn’t install K-diffusion

Couldn’t install CodeFormer

Couldn’t install BLIP

6. Couldn’t install K-diffusion

见 5 解决方法。

7. Couldn’t install CodeFormer

见 5 解决方法。

8. Couldn’t install BLIP

见 5 解决方法。

五、 性能测试

大模型:dreamshaper

Euler:出一张 512 * 512 的图,约 20 ~ 30s

DPM++ SDE Karras:出一张 512 * 512 的图,约 1 ~ 1.5 min

六、 结束语

Stable Diffusion 本地部署相对于 Stable Diffusion 云部署,最大的两个优点就是:

更自由(懂的都懂)!

不花钱,完全免费!

Kaggle 虽然每月可白嫖 30 个小时的算力,但太容易被封,稍微画得上头一些,就被封了。我的账号就被祭了。

Kaggle 被封后,又转战到了 AutoDL,相比于 Kaggle 来说,不那么容易被封,但是需要花钱。大部分机器实例在 1~2 元 / 小时,也不算贵,但是用完后一旦忘记给实例关机,一天几十就出去了。呃,这。。。

所以这周,一顿操作猛如虎,终于在 Mac 上成功部署了 Stable Diffusion,实现了 Stable Diffusion 自由!也将所有踩过的坑,一一填平并记录了下来。希望可以帮到想在 Mac 上部署 Stable Diffusion 的同学。

其实在 Mac 本地部署 Stable Diffusion 遇到的大部分问题,基本都是网络造成的。每个人的电脑配置及网络环境都不一样,所以有时会遇到试了好几个解决方案都无法解决的情况。其实我也是。网友说他这么改成功了,而我那么改,依然不起作用。

所以最后想对大家说的是,耐心一点,再耐心一点,方法总是有的,问题总会解决!

大家加油!


本文转载自: https://blog.csdn.net/u011886447/article/details/131778168
版权归原作者 程序员X小鹿 所有, 如有侵权,请联系我们删除。

“Mac本地部署Stable Diffusion,超详细,含踩坑点(AI 绘画保姆级教程)”的评论:

还没有评论