0


深入浅出TensorFlow2函数——tf.exp

分类目录:《深入浅出TensorFlow2函数》总目录
相关文章:
· 深入浅出TensorFlow2函数——tf.exp
· 深入浅出TensorFlow2函数——tf.math.exp
· 深入浅出Pytorch函数——torch.exp
· 深入浅出PaddlePaddle函数——paddle.exp


按元素计算

  1. x
  2. x
  3. x的指数
  4. y
  5. =
  6. e
  7. x
  8. y=e^x
  9. y=ex

语法

  1. tf.exp(
  2. x, name=None
  3. )

参数

  • x:[tf.Tensor] 必须是以下类型之一:bfloat16halffloat32float64complex64complex128
  • name:[可选] 操作的名称。

返回值

一个与

  1. x

类型相同的

  1. tf.Tensor

实例

输入:

  1. x = tf.constant([2.0,8.0])
  2. tf.exp(x)

输出:

  1. <tf.Tensor: shape=(2,), dtype=float32, numpy=array([7.389056,2980.958], dtype=float32)>

函数实现

  1. @tf_export("math.exp","exp")
  2. @dispatch.register_unary_elementwise_api
  3. @dispatch.add_dispatch_support
  4. def exp(x, name=None):
  5. r"""Computes exponential of x element-wise. \\(y = e^x\\).
  6. This function computes the exponential of the input tensor element-wise.
  7. i.e. `math.exp(x)` or \\(e^x\\), where `x` is the input tensor.
  8. \\(e\\) denotes Euler's number and is approximately equal to 2.718281.
  9. Output is positive for any real input.>>> x = tf.constant(2.0)>>> tf.math.exp(x)<tf.Tensor: shape=(), dtype=float32, numpy=7.389056>>>> x = tf.constant([2.0,8.0])>>> tf.math.exp(x)<tf.Tensor: shape=(2,), dtype=float32,
  10. numpy=array([7.389056,2980.958], dtype=float32)>
  11. For complex numbers, the exponential value is calculated as
  12. $$
  13. e^{x+iy}={e^x}{e^{iy}}={e^x}({\cos(y)+ i \sin(y)})
  14. $$
  15. For `1+1j` the value would be computed as:
  16. $$
  17. e^1(\cos(1)+ i \sin(1))=2.7182817 \times(0.5403023+0.84147096j)
  18. $$
  19. >>> x = tf.constant(1+1j)>>> tf.math.exp(x)<tf.Tensor: shape=(), dtype=complex128,
  20. numpy=(1.4686939399158851+2.2873552871788423j)>
  21. Args:
  22. x: A `tf.Tensor`. Must be one of the following types: `bfloat16`, `half`,
  23. `float32`, `float64`, `complex64`, `complex128`.
  24. name: A name for the operation(optional).
  25. Returns:
  26. A `tf.Tensor`. Has the same type as `x`.
  27. @compatibility(numpy)
  28. Equivalent to np.exp
  29. @end_compatibility
  30. """
  31. return gen_math_ops.exp(x, name)

本文转载自: https://blog.csdn.net/hy592070616/article/details/129823290
版权归原作者 von Neumann 所有, 如有侵权,请联系我们删除。

“深入浅出TensorFlow2函数——tf.exp”的评论:

还没有评论