0.写在前面
这些题目所用语言为C语言,由于C语言未提供栈和队列的数据结构,所以需要我们手动实现栈和队列。此外熟练掌握栈和队列的性质对解题尤为重要。如果忘记了栈和队列的使用方法可在此直接跳转到栈和队列详解篇。
<栈>的概念&结构&实现【C语言版】http://t.csdn.cn/lqe2X<队列>的概念&结构&实现【C语言版】http://t.csdn.cn/iXiZI
1.leetcode.20 有效的括号
OJ链接:有效的括号(点此跳转)
解题思路:遍历字符串,如果碰到 ' ( ' 或 ' [ ' 或 ' { ' 就入栈;如果碰到字符是 ' ) ' ,栈顶的元素又是 ' ( ',就将栈顶的元素出栈。其他两种情况与之类似。
解题实战:
typedef char STDataType;
typedef struct Stack
{
STDataType* a; //动态开辟数组
int capacity; //记录栈的容量大小
int top; //记录栈顶的位置
}Stack;
//栈的初始化
void StackInit(Stack* ps);
//释放动态开辟的内存
void StackDestroy(Stack* ps);
//压栈
void StackPush(Stack* ps, STDataType data);
//出栈
void StackPop(Stack* ps);
//读取栈顶的元素
STDataType StackTop(Stack* ps);
//判断栈是否为空
bool StackEmpty(Stack* ps);
//栈存储的数据个数
int StackSize(Stack* ps);
void StackInit(Stack* ps)
{
assert(ps);
//初始化时,可附初值,也可置空
ps->a = NULL;
ps->capacity = 0;
ps->top = 0;
}
void StackDestroy(Stack* ps)
{
assert(ps);
//若并未对ps->a申请内存,则无需释放
if (ps->capacity == 0)
return;
//释放
free(ps->a);
ps->a = NULL;
ps->capacity = ps->top = 0;
}
void StackPush(Stack* ps,STDataType data)
{
assert(ps);
//若容量大小等于数据个数,则说明栈已满,需扩容
if (ps->capacity == ps->top)
{
//若为第一次扩容,则大小为4,否则每次扩大2倍
int newCapacity = ps->capacity == 0 ? 4 : ps->capacity * 2;
STDataType* tmp = (STDataType*)realloc(ps->a, sizeof(STDataType) * newCapacity);
if (tmp == NULL)
{
perror("realloc fail");
exit(-1);
}
ps->a = tmp;
ps->capacity = newCapacity;
}
//压栈
ps->a[ps->top] = data;
ps->top++;
}
void StackPop(Stack* ps)
{
assert(ps);
assert(!StackEmpty(ps));
//出栈
ps->top--;
}
STDataType StackTop(Stack* ps)
{
assert(ps);
assert(!StackEmpty(ps));
//返回栈顶的数据
return ps->a[ps->top - 1];
}
bool StackEmpty(Stack* ps)
{
assert(ps);
//返回top
return ps->top == 0;
}
int StackSize(Stack* ps)
{
assert(ps);
return ps->top;
}
bool isValid(char* s) {
Stack ST;
StackInit(&ST);
int pos=0;
//遍历字符串,遇到'\0'结束
while(*(s+pos) != '\0')
{
if(*(s+pos) == '(' || *(s+pos) == '[' || *(s+pos) == '{')
{
StackPush(&ST,*(s+pos));
}
else
{
if(StackEmpty(&ST))
return false;
if((ST.top != 0) &&
(*(s+pos) == ')' && StackTop(&ST) == '(')||
(*(s+pos) == ']' && StackTop(&ST) == '[')||
(*(s+pos) == '}' && StackTop(&ST) == '{'))
{
StackPop(&ST);
}
else
{
return false;
}
}
pos++;
}
if( StackEmpty(&ST) )
{
return true;
}
else
{
return false;
}
}
2.leetcode.225 用队列实现栈
OJ链接:用队列实现栈
解题思路:首先我们要清楚栈和队列的性质:
栈:先进后出。只在尾部删数据。
队列:先进先出。只在头部删数据。
也就是说,添加数据时,两个是一样的,区别在于删数据时。栈要pop一个数据时,其实pop的是队尾的数据,而不巧的是,队列不能在队尾pop数据。所以此时,我们用两个队列来完成。
栈的结构定义用两个队列来实现。
typedef struct {
Queue q1;
Queue q2;
int size;
} MyStack;
使用两个队列的目的是,其中一个队列用来存储数据,另外一个空的队列在pop的时候用来接收非空的队列的数据。非空队列将数据全部拷贝到空队列,只留下一个队尾的数据,此时,队列只剩一个元素,它既在队尾也在队头,所以就可以pop了。
解题实战:
typedef int QDataType;
typedef struct QueueNode
{
QDataType data; //存储的数据
struct QueueNode* next; //记录下一个结点的位置
}QNode;
typedef struct Queue
{
QNode* head; //记录队头的位置
QNode* tail; //记录队尾的位置
int size; //记录队列的长度
}Queue;
//队列的初始化
void QueueInit(Queue* pq);
//释放malloc出的内存
void QueueDestroy(Queue* pq);
//入队
void QueuePush(Queue* pq, QDataType x);
//出队
void QueuePop(Queue* pq);
//获取队头的数据
QDataType QueueFront(Queue* pq);
//获取队尾的数据
QDataType QueueBack(Queue* pq);
//判断队列是否为空
bool QueueEmpty(Queue* pq);
//队列数据的个数
int QueueSize(Queue* pq);
void QueueInit(Queue* pq)
{
assert(pq);
pq->head = NULL;
pq->tail = NULL;
pq->size = 0;
}
void QueueDestroy(Queue* pq)
{
assert(pq);
//用cur找尾
QNode* cur = pq->head;
while (cur)
{
QNode* del = cur;
cur = cur->next;
free(del);
}
pq->size = 0;
pq->head = pq->tail = NULL;
}
void QueuePush(Queue* pq,QDataType data)
{
assert(pq);
QNode* newNode = (QNode*)malloc(sizeof(QNode));
if (newNode == NULL)
{
perror("malloc fail");
exit(-1);
}
//初始化结点
newNode->data = data;
newNode->next = NULL;
if (pq->tail == NULL)
{
//队列为空时入队
pq->head = newNode;
pq->tail = newNode;
}
else
{
//队列不为空时入队
pq->tail->next = newNode;
pq->tail = newNode;
}
pq->size++;
}
void QueuePop(Queue* pq)
{
assert(pq);
assert(!QueueEmpty(pq));
if (pq->head->next == NULL)
{
//只有一个结点时
free(pq->head);
pq->head = pq->tail = NULL;
}
else
{
//一般情况
QNode* del = pq->head;
pq->head = pq->head->next;
free(del);
}
pq->size--;
}
QDataType QueueFront(Queue* pq)
{
assert(pq);
assert(!QueueEmpty(pq));
return pq->head->data;
}
QDataType QueueBack(Queue* pq)
{
assert(pq);
assert(!QueueEmpty(pq));
return pq->tail->data;
}
bool QueueEmpty(Queue* pq)
{
assert(pq);
//return pq->size==0;
return pq->head == NULL && pq->tail == NULL;
}
int QueueSize(Queue* pq)
{
assert(pq);
return pq->size;
}
typedef struct {
Queue q1;
Queue q2;
int size;
} MyStack;
MyStack* myStackCreate() {
MyStack* ps=(MyStack*)malloc(sizeof(MyStack));
QueueInit(&ps->q1);
QueueInit(&ps->q2);
ps->size=0;
return ps;
}
void myStackPush(MyStack* obj, int x) {
//找一个不为空的队列来push数据
Queue* noneQueue=(&obj->q1)->size == 0?&obj->q2:&obj->q1;
QueuePush(noneQueue,x);
obj->size++;
}
int myStackPop(MyStack* obj) {
//找空队列
if ((obj->q2).size == 0)
{
QDataType top;
//复制数据
while ((&obj->q1)->size > 1)
{
top = QueueFront(&obj->q1);
QueuePop(&obj->q1);
QueuePush(&obj->q2,top);
}
top=QueueFront(&obj->q1);
QueuePop(&obj->q1);
obj->size--;
return top;
}
else
{
QDataType top;
//复制数据
while ((&obj->q2)->size > 1)
{
top = QueueFront(&obj->q2);
QueuePop(&obj->q2);
QueuePush(&obj->q1,top);
}
top = QueueFront(&obj->q2);
QueuePop(&obj->q2);
obj->size--;
return top;
}
}
int myStackTop(MyStack* obj) {
if ((&obj->q1)->size != 0)
return (&obj->q1)->tail->data;
else
return (&obj->q2)->tail->data;
}
bool myStackEmpty(MyStack* obj) {
return !obj->size;
}
void myStackFree(MyStack* obj) {
QueueDestroy(&obj->q1);
QueueDestroy(&obj->q2);
free(obj);
obj=NULL;
}
3.leetcode.232 用栈实现队列
OJ链接:用栈实现队列
解题思路:同上一题的思路,本题也是用两个栈实现队列。其中s1用来push,s2用来pop和peek。与上一题不同的是,这次pop时,不用一直将s1的数据导入到s2中。而是当s2为空时再导入。
解题实战:
typedef int STDataType;
typedef struct Stack
{
STDataType* a; //动态开辟数组
int capacity; //记录栈的容量大小
int top; //记录栈顶的位置
}Stack;
//栈的初始化
void StackInit(Stack* ps);
//释放动态开辟的内存
void StackDestroy(Stack* ps);
//压栈
void StackPush(Stack* ps, STDataType data);
//出栈
void StackPop(Stack* ps);
//读取栈顶的元素
STDataType StackTop(Stack* ps);
//判断栈是否为空
bool StackEmpty(Stack* ps);
//栈存储的数据个数
int StackSize(Stack* ps);
void StackInit(Stack* ps)
{
assert(ps);
//初始化时,可附初值,也可置空
ps->a = NULL;
ps->capacity = 0;
ps->top = 0;
}
void StackDestroy(Stack* ps)
{
assert(ps);
//若并未对ps->a申请内存,则无需释放
if (ps->capacity == 0)
return;
//释放
free(ps->a);
ps->a = NULL;
ps->capacity = ps->top = 0;
}
void StackPush(Stack* ps,STDataType data)
{
assert(ps);
//若容量大小等于数据个数,则说明栈已满,需扩容
if (ps->capacity == ps->top)
{
//若为第一次扩容,则大小为4,否则每次扩大2倍
int newCapacity = ps->capacity == 0 ? 4 : ps->capacity * 2;
STDataType* tmp = (STDataType*)realloc(ps->a, sizeof(STDataType) * newCapacity);
if (tmp == NULL)
{
perror("realloc fail");
exit(-1);
}
ps->a = tmp;
ps->capacity = newCapacity;
}
//压栈
ps->a[ps->top] = data;
ps->top++;
}
void StackPop(Stack* ps)
{
assert(ps);
assert(!StackEmpty(ps));
//出栈
ps->top--;
}
STDataType StackTop(Stack* ps)
{
assert(ps);
assert(!StackEmpty(ps));
//返回栈顶的数据
return ps->a[ps->top - 1];
}
bool StackEmpty(Stack* ps)
{
assert(ps);
//返回top
return ps->top == 0;
}
int StackSize(Stack* ps)
{
assert(ps);
return ps->top;
}
typedef struct {
Stack s1; //用来push数据
Stack s2; //用来pop和peek
} MyQueue;
MyQueue* myQueueCreate() {
MyQueue* myqueue = (MyQueue*)malloc(sizeof(MyQueue));
StackInit(&myqueue->s1);
StackInit(&myqueue->s2);
return myqueue;
}
void myQueuePush(MyQueue* obj, int x) {
StackPush(&obj->s1, x);
}
int myQueuePeek(MyQueue* obj) {
//s2不为空时,不用再将s1的数据导入到s2
if(StackEmpty(&obj->s2))
{
//将s1的数据倒着push到s2中
while (!StackEmpty(&obj->s1))
{
STDataType top = StackTop(&obj->s1);
StackPop(&obj->s1);
StackPush(&obj->s2, top);
}
}
//此时s2的数据是逆置的,所以栈顶的数据也就是队头的数据
return StackTop(&obj->s2);
}
int myQueuePop(MyQueue* obj) {
STDataType top= myQueuePeek(obj);
//此时s2的数据是逆置的,pop s2栈顶的数据,也就是pop队头的数据
StackPop(&obj->s2);
return top;
}
bool myQueueEmpty(MyQueue* obj) {
return StackEmpty(&obj->s1) && StackEmpty(&obj->s2);
}
void myQueueFree(MyQueue* obj) {
StackDestroy(&obj->s1);
StackDestroy(&obj->s2);
free(obj);
obj = NULL;
4.leetcode.622 设计循环队列
OJ链接:设计循环队列
解题思路:循环队列与普通的队列就两点差别。
1.增加一个capacity来记录队列的容量
2.队尾与队头相连(称之为循环)
解题实战:
typedef int QDataType;
typedef struct QueueNode
{
QDataType data; //存储的数据
struct QueueNode* next; //记录下一个结点的位置
}QNode;
typedef struct {
QNode* head;
QNode* tail;
int size;
int capacity;
} MyCircularQueue;
bool myCircularQueueIsEmpty(MyCircularQueue* obj);
bool myCircularQueueIsFull(MyCircularQueue* obj);
MyCircularQueue* myCircularQueueCreate(int k) {
MyCircularQueue* tmp=(MyCircularQueue*)malloc(sizeof(MyCircularQueue));
tmp->head=NULL;
tmp->tail=NULL;
tmp->size=0;
tmp->capacity=k;
return tmp;
}
bool myCircularQueueEnQueue(MyCircularQueue* obj, int value) {
if(myCircularQueueIsFull(obj))
return false;
QNode* newNode = (QNode*)malloc(sizeof(QNode));
if (newNode == NULL)
{
perror("malloc fail");
exit(-1);
}
newNode->next = NULL;
newNode->data = value;
if (obj->size == 0)
{
obj->head = obj->tail = newNode;
obj->size++;
}
else
{
obj->tail->next = newNode;
obj->tail = newNode;
newNode->next=obj->head;
obj->size++;
}
return true;
}
bool myCircularQueueDeQueue(MyCircularQueue* obj) {
if(myCircularQueueIsEmpty(obj))
return false;
QNode* cur=obj->head;
obj->head=obj->head->next;
obj->tail->next=obj->head;
free(cur);
obj->size--;
return true;
}
int myCircularQueueFront(MyCircularQueue* obj) {
if(myCircularQueueIsEmpty(obj))
return -1;
return obj->head->data;
}
int myCircularQueueRear(MyCircularQueue* obj) {
if(myCircularQueueIsEmpty(obj))
return -1;
return obj->tail->data;
}
bool myCircularQueueIsEmpty(MyCircularQueue* obj) {
return !obj->size;
}
bool myCircularQueueIsFull(MyCircularQueue* obj) {
return obj->size==obj->capacity;
}
void myCircularQueueFree(MyCircularQueue* obj) {
if(myCircularQueueIsEmpty(obj))
{
free(obj);
return;
}
while(obj->head!=obj->tail)
{
QNode* cur=obj->head;
obj->head=obj->head->next;
free(cur);
}
free(obj->head);
free(obj);
obj=NULL;
}
版权归原作者 花想云 所有, 如有侵权,请联系我们删除。