0


【深度学习21天学习挑战赛】备忘篇:我们的神经网模型到底长啥样?——model.summary()详解

活动地址:CSDN21天学习挑战赛

学完手写识别和服装分类,想稍微停下来消化一下新学的东西,也总结一下,今天就从keras的

model.summary()

输出开始吧!


1、model.summary()是什么

构建深度学习模型,我们会通过

model.summary()

输出模型各层的参数状况,已我们刚刚学过的模型为例:
在这里插入图片描述
在这里插入图片描述
这里可以看出,

model.summary()

打印出的内容,是和我们构建模型的层级关系是一样,服装分类模型为例:

#构建模型代码
model = models.Sequential([
    layers.Conv2D(32,(3,3), activation='relu', input_shape=(28,28,1)),#卷积层1,卷积核3*3
    layers.MaxPooling2D((2,2)),#池化层1,2*2采样
    layers.Conv2D(64,(3,3), activation='relu'),#卷积层2,卷积核3*3
    layers.MaxPooling2D((2,2)),#池化层2,2*2采样
    layers.Conv2D(64,(3,3), activation='relu'),#卷积层3,卷积核3*3
    layers.Flatten(),#Flatten层,连接卷积层与全连接层
    layers.Dense(64, activation='relu'),#全连接层,特征进一步提取
    layers.Dense(10)#输出层,输出预期结果])

在这里插入图片描述

2、model.summary()输出含义

仍以服装分类模型为例:

Model:"sequential_2"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   =================================================================
conv2d_6 (Conv2D)(None,26,26,32)320#创建: layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)), #卷积层1,卷积核3*3
_________________________________________________________________
max_pooling2d_4 (MaxPooling2 (None,13,13,32)0#创建:layers.MaxPooling2D((2, 2)),                   #池化层1,2*2采样  
_________________________________________________________________
conv2d_7 (Conv2D)(None,11,11,64)18496#创建:layers.Conv2D(64, (3, 3), activation='relu'),  #卷积层2,卷积核3*3 
_________________________________________________________________
max_pooling2d_5 (MaxPooling2 (None,5,5,64)0#创建:layers.MaxPooling2D((2, 2)),                   #池化层2,2*2采样    
_________________________________________________________________
conv2d_8 (Conv2D)(None,3,3,64)36928#创建:layers.Conv2D(64, (3, 3), activation='relu'),  #卷积层3,卷积核3*3
_________________________________________________________________
flatten_2 (Flatten)(None,576)0#创建:layers.Flatten(),       #Flatten层,连接卷积层与全连接层      
_________________________________________________________________
dense_4 (Dense)(None,64)36928#创建:layers.Dense(64, activation='relu'),   #全连接层,特征进一步提取  
_________________________________________________________________
dense_5 (Dense)(None,10)650#创建:layers.Dense(10)                       #输出层,输出预期结果=================================================================
Total params:93,322
Trainable params:93,322
Non-trainable params:0
_________________________________________________________________
  • Param:该层输入参数个数, 那这个数字是怎么来的呢? a、卷积层参数个数的计算公式(卷积核长度*卷积核宽度*通道数+1)*卷积核个数: 第一个卷积层:(3*3*1+1)*32 = 320 第二个卷积层:(3*3*32+1)*64 = 18496 第三个卷积层:(3*3*64+1)*64 = 36928b、全连接层参数个数的计算公式(输入数据维度+1)* 神经元个数: 输出层之前的全连接层:(64+1)*10=650 这里之所以要加1,因为每个神经元都有一个偏置(Bias)
  • Output Shape :该层输出数据形状
  • Total params: 模型参数总数,每层参数累加
  • Trainable params: 模型可训练参数
  • Non-trainable params:模型不可训练参数

3、理解模型流程形状

通过model.summary(),我们再看这个图,就清楚多了
在这里插入图片描述

在这里插入图片描述


本文转载自: https://blog.csdn.net/m0_48300767/article/details/126125355
版权归原作者 不负卿@ 所有, 如有侵权,请联系我们删除。

“【深度学习21天学习挑战赛】备忘篇:我们的神经网模型到底长啥样?——model.summary()详解”的评论:

还没有评论