一、安装配置Anaconda
进入官网下载安装包https://www.anaconda.com/并安装,然后将Anaconda配置到环境变量中。
打开命令行,依次通过如下命令创建Python运行虚拟环境。
conda env create novelai python==3.10.6
E:\workspace\02_Python\novalai>conda info --envs
# conda environments:#
base * D:\anaconda3
novelai D:\anaconda3\envs\novelai
conda activate novelai
二、安装CUDA
笔者的显卡为NVIDIA,需安装NVIDIA的开发者工具进入官网https://developer.nvidia.com/,根据自己计算机的系统情况,选择合适的安装包下载安装。
打开安装程序后,依照提示完成安装。
安装完成后,在命令窗口输入如下命令,输出CUDA版本即安装成功。
C:\Users\yefuf>nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c)2005-2022 NVIDIA Corporation
Built on Wed_Sep_21_10:41:10_Pacific_Daylight_Time_2022
Cuda compilation tools, release 11.8, V11.8.89
Build cuda_11.8.r11.8/compiler.31833905_0
三、安装pytorch
进入官网https://pytorch.org/,根据计算机配置选择合适的版本进行安装。这里需要注意的是CUDA的平台选择,先打开NVIDIA控制面板-帮助-系统信息-组件查看CUDA版本,官网上选择的计算平台需要低于计算机的NVIDIA版本。
配置选择完成后,官网会生成相应的安装命令。
将安装命令复制出,命令窗口执行安装即可。
conda install pytorch torchvision torchaudio pytorch-cuda=11.6 -c pytorch -c nvidia
当查到Pytorch官网推荐的CUDA版本跟你的显卡版本不匹配时,就需要根据官网的CUDA版本找到对应的显卡驱动版本并升级显卡驱动,对应关系可通过https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html查看
四、安装git
进入git官网https://git-scm.com/,下载安装即可。
五、搭建stable-diffusion-webui
进入项目地址https://github.com/AUTOMATIC1111/stable-diffusion-webui,通过git将项目克隆下来。
git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
Cloning into 'stable-diffusion-webui'...
remote: Enumerating objects: 10475, done.
remote: Counting objects: 100% (299/299), done.
remote: Compressing objects: 100% (199/199), done.
remote: Total 10475(delta 178), reused 199(delta 100), pack-reused 10176
Receiving objects: 100% (10475/10475), 23.48 MiB |195.00 KiB/s, done.
Resolving deltas: 100% (7312/7312), done.
克隆下载扩展库。
git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients “extensions/aesthetic-gradients”
Cloning into 'extensions/aesthetic-gradients'...
remote: Enumerating objects: 21, done.
remote: Counting objects: 100% (21/21), done.
remote: Compressing objects: 100% (12/12), done.
remote: Total 21(delta 3), reused 18(delta 3), pack-reused 0
Receiving objects: 100% (21/21), 1.09 MiB |1.34 MiB/s, done.
Resolving deltas: 100% (3/3), done.
git clone https://github.com/yfszzx/stable-diffusion-webui-images-browser “extensions/images-browser”
Cloning into 'extensions/images-browser'...
remote: Enumerating objects: 118, done.
remote: Counting objects: 100% (118/118), done.
remote: Compressing objects: 100% (70/70), done.
remote: Total 118(delta 42), reused 65(delta 24), pack-reused 0
Receiving objects: 100% (118/118), 33.01 KiB |476.00 KiB/s, done.
Resolving deltas: 100% (42/42), done.
克隆完成后,
extensions
目录会多如下文件夹:
下载模型库https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies,并将下载的
.ckpt
放到
models/Stable-diffusion
文件夹中。模型很大,推荐使用下载器。
安装项目所需的Python依赖库。
pip install -r requirements.txt
安装完成之后,运行如下命令,顺利的话,当程序加载完成模型之后,会自动打开
http://127.0.0.1:7860/
显示平台主页。
python launch.py --autolaunch
进入平台的设置页面,选择语言为中文,重启程序之后,即可看到页面显示为中文。
在界面中输入作画内容的正向提示词(画想要什么特征)和反向提示词(画不想要什么特征),点击生成即可开始自动作画。
如上述的提示词作出的画如图(由于随机种子不同,生成的画会有差异)。
六、如何设置提示词
这里建议使用元素法典https://docs.qq.com/doc/DWHl3am5Zb05QbGVs,上面有前人整理好的提示词及效果,以供参考。
七、可能遇到的问题
1、GitHub访问不了或访问慢
一般为DNS解析问题,需要修改本地host文件,增加配置内容,绕过域名解析,达到加速访问的目的。
访问https://www.ipaddress.com/,分别输入
github.com
和
github.global.ssl.fastly.net
,获取域名对应的IP地址。
打开系统的Host文件,将IP和域名的对应关系配置到Host文件中。
配置文件内容如下:
140.82.114.4 github.com
199.232.5.194 github.global.ssl.fastly.net
执行命令
ipconfig /flushdns
刷新DNS即可。
2、pip安装依赖库慢或常下载失败
pip安装依赖库时默认选择国外的源,安装速度会非常慢,可以考虑切换为国内源,常用的国内源如下:
阿里云 https://mirrors.aliyun.com/pypi/simple/
中国科技大学 https://pypi.mirrors.ustc.edu.cn/simple/
豆瓣(douban) https://pypi.douban.com/simple/
清华大学 https://pypi.tuna.tsinghua.edu.cn/simple/
中国科学技术大学 https://pypi.mirrors.ustc.edu.cn/simple/
在安装依赖库时,可使用
pip install -i 源 空格 安装包名称
进行源的选择,如
pip install -i https://mirrors.aliyun.com/pypi/simple numpy
。
也可以通过增加配置文件,使安装依赖库时默认选择国内的源,在用户目录下增加
pip.ini
文件。
在文件中写入如下内容。
[global]timeout=60000
index-url = https://pypi.tuna.tsinghua.edu.cn/simple
[install]
use-mirrors =true
mirrors = https://pypi.tuna.tsinghua.edu.cn
3、安装CLIP时提示Connection was aborted, errno 10053
出错时的错误打印如下:
(novelai) E:\workspace\02_Python\novalai\stable-diffusion-webui>python launch.py
Python 3.10.6 | packaged by conda-forge |(main, Oct 242022, 16:02:16)[MSC v.1916 64 bit (AMD64)]
Commit hash: b8f2dfed3c0085f1df359b9dc5b3841ddc2196f0
Installing clip
Traceback (most recent call last):
File "E:\workspace\02_Python\novalai\stable-diffusion-webui\launch.py", line 251, in<module>
prepare_enviroment()
File "E:\workspace\02_Python\novalai\stable-diffusion-webui\launch.py", line 178, in prepare_enviroment
run_pip(f"install {clip_package}", "clip")
File "E:\workspace\02_Python\novalai\stable-diffusion-webui\launch.py", line 63, in run_pip
return run(f'"{python}" -m pip {args} --prefer-binary{index_url_line}', desc=f"Installing {desc}", errdesc=f"Couldn't install {desc}")
File "E:\workspace\02_Python\novalai\stable-diffusion-webui\launch.py", line 34, in run
raise RuntimeError(message)
RuntimeError: Couldn't install clip.
Command: "D:\anaconda3\envs\novelai\python.exe" -m pip install git+https://github.com/openai/CLIP.git@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1 --prefer-binary
Error code: 1
stdout: Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Collecting git+https://github.com/openai/CLIP.git@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1
Cloning https://github.com/openai/CLIP.git (to revision d50d76daa670286dd6cacf3bcd80b5e4823fc8e1) to c:\users\yefuf\appdata\local\temp\pip-req-build-f8w7kbzg
stderr: Running command git clone --filter=blob:none --quiet https://github.com/openai/CLIP.git 'C:\Users\yefuf\AppData\Local\Temp\pip-req-build-f8w7kbzg'
fatal: unable to access 'https://github.com/openai/CLIP.git/': OpenSSL SSL_read: Connection was aborted, errno 10053
error: subprocess-exited-with-error
git clone --filter=blob:none --quiet https://github.com/openai/CLIP.git 'C:\Users\yefuf\AppData\Local\Temp\pip-req-build-f8w7kbzg' did not run successfully.
exit code: 128
See above for output.
note: This error originates from a subprocess, and is likely not a problem with pip.
error: subprocess-exited-with-error
git clone --filter=blob:none --quiet https://github.com/openai/CLIP.git 'C:\Users\yefuf\AppData\Local\Temp\pip-req-build-f8w7kbzg' did not run successfully.
exit code: 128
See above for output.
note: This error originates from a subprocess, and is likely not a problem with pip.
通过访
CLIP
项目
GitHub
主页,发现该项目可以通过如下命令进行安装解决。
pip install ftfy regex tqdm
pip install git+https://github.com/openai/CLIP.git
4、项目启动中提示Connection was reset in connection to github.com
出错时的错误打印如下:
(novelai) E:\workspace\02_Python\novalai\stable-diffusion-webui>python launch.py
Python 3.10.6 | packaged by conda-forge |(main, Oct 242022, 16:02:16)[MSC v.1916 64 bit (AMD64)]
Commit hash: b8f2dfed3c0085f1df359b9dc5b3841ddc2196f0
Cloning Stable Diffusion into repositories\stable-diffusion...
Cloning Taming Transformers into repositories\taming-transformers...
Traceback (most recent call last):
File "E:\workspace\02_Python\novalai\stable-diffusion-webui\launch.py", line 251, in<module>
prepare_enviroment()
File "E:\workspace\02_Python\novalai\stable-diffusion-webui\launch.py", line 201, in prepare_enviroment
git_clone(taming_transformers_repo, repo_dir('taming-transformers'), "Taming Transformers", taming_transformers_commit_hash)
File "E:\workspace\02_Python\novalai\stable-diffusion-webui\launch.py", line 85, in git_clone
run(f'"{git}" clone "{url}" "{dir}"', f"Cloning {name} into {dir}...", f"Couldn't clone {name}")
File "E:\workspace\02_Python\novalai\stable-diffusion-webui\launch.py", line 34, in run
raise RuntimeError(message)
RuntimeError: Couldn't clone Taming Transformers.
Command: "git" clone "https://github.com/CompVis/taming-transformers.git" "repositories\taming-transformers"
Error code: 128
stdout: <empty>
stderr: Cloning into 'repositories\taming-transformers'...
fatal: unable to access 'https://github.com/CompVis/taming-transformers.git/': OpenSSL SSL_connect: Connection was reset in connection to github.com:443
在命令窗口中输入如下命令,然后重新运行程序,但实际操作下来,仍有较大概率在克隆项目的过程中失败。
git config --global http.postBuffer 524288000git config --global http.sslVerify "false"
查看
lauch.py
中的代码可以发现,程序在启动时有对依赖项目进行检查,如项目不存在,则克隆下来。
defprepare_enviroment():
torch_command = os.environ.get('TORCH_COMMAND',"pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 --extra-index-url https://download.pytorch.org/whl/cu113")
requirements_file = os.environ.get('REQS_FILE',"requirements_versions.txt")
commandline_args = os.environ.get('COMMANDLINE_ARGS',"")
gfpgan_package = os.environ.get('GFPGAN_PACKAGE',"git+https://github.com/TencentARC/GFPGAN.git@8d2447a2d918f8eba5a4a01463fd48e45126a379")
clip_package = os.environ.get('CLIP_PACKAGE',"git+https://github.com/openai/CLIP.git@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1")
deepdanbooru_package = os.environ.get('DEEPDANBOORU_PACKAGE',"git+https://github.com/KichangKim/DeepDanbooru.git@d91a2963bf87c6a770d74894667e9ffa9f6de7ff")
xformers_windows_package = os.environ.get('XFORMERS_WINDOWS_PACKAGE','https://github.com/C43H66N12O12S2/stable-diffusion-webui/releases/download/f/xformers-0.0.14.dev0-cp310-cp310-win_amd64.whl')
stable_diffusion_repo = os.environ.get('STABLE_DIFFUSION_REPO',"https://github.com/CompVis/stable-diffusion.git")
taming_transformers_repo = os.environ.get('TAMING_REANSFORMERS_REPO',"https://github.com/CompVis/taming-transformers.git")
k_diffusion_repo = os.environ.get('K_DIFFUSION_REPO','https://github.com/crowsonkb/k-diffusion.git')
codeformer_repo = os.environ.get('CODEFORMET_REPO','https://github.com/sczhou/CodeFormer.git')
blip_repo = os.environ.get('BLIP_REPO','https://github.com/salesforce/BLIP.git')
stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH',"69ae4b35e0a0f6ee1af8bb9a5d0016ccb27e36dc")
taming_transformers_commit_hash = os.environ.get('TAMING_TRANSFORMERS_COMMIT_HASH',"24268930bf1dce879235a7fddd0b2355b84d7ea6")
k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH',"f4e99857772fc3a126ba886aadf795a332774878")
codeformer_commit_hash = os.environ.get('CODEFORMER_COMMIT_HASH',"c5b4593074ba6214284d6acd5f1719b6c5d739af")
blip_commit_hash = os.environ.get('BLIP_COMMIT_HASH',"48211a1594f1321b00f14c9f7a5b4813144b2fb9")
因此,我们打开
git bash
重新执行上述两条
git
命令,预先将项目克隆下来。
git clone https://github.com/CompVis/taming-transformers.git "repositories\taming-transformers"git clone https://github.com/crowsonkb/k-diffusion.git "repositories\k-diffusion"git clone https://github.com/sczhou/CodeFormer.git "repositories\CodeFormer"git clone https://github.com/salesforce/BLIP.git "repositories\BLIP"
克隆完成之后如图:
5、项目启动中提示CUDA out of memory
出错时的错误打印如下:
(novelai) E:\workspace\02_Python\novalai\stable-diffusion-webui>python launch.py
Python 3.10.6 | packaged by conda-forge | (main, Oct 24 2022, 16:02:16) [MSC v.1916 64 bit (AMD64)]
Commit hash: b8f2dfed3c0085f1df359b9dc5b3841ddc2196f0
Fetching updates for BLIP...
Checking out commit for BLIP with hash: 48211a1594f1321b00f14c9f7a5b4813144b2fb9...
Installing requirements for CodeFormer
Installing requirements for Web UI
Launching Web UI with arguments:
Moving sd-v1-4.ckpt from E:\workspace\02_Python\novalai\stable-diffusion-webui\models to E:\workspace\02_Python\novalai\stable-diffusion-webui\models\Stable-diffusion.
LatentDiffusion: Running in eps-prediction mode
DiffusionWrapper has 859.52 M params.
making attention of type 'vanilla' with 512 in_channels
Working with z of shape (1, 4, 32, 32) = 4096 dimensions.
making attention of type 'vanilla' with 512 in_channels
Downloading: 100%|██████████████████████████████████████████████████████████████████| 939k/939k [00:00<00:00, 1.26MB/s]
Downloading: 100%|███████████████████████████████████████████████████████████████████| 512k/512k [00:01<00:00, 344kB/s]
Downloading: 100%|████████████████████████████████████████████████████████████████████████████| 389/389 [00:00<?, ?B/s]
Downloading: 100%|████████████████████████████████████████████████████████████████████████████| 905/905 [00:00<?, ?B/s]
Downloading: 100%|████████████████████████████████████████████████████████████████████████| 4.41k/4.41k [00:00<?, ?B/s]
Downloading: 100%|████████████████████████████████████████████████████████████████| 1.59G/1.59G [03:56<00:00, 7.23MB/s]
Loading weights [7460a6fa] from E:\workspace\02_Python\novalai\stable-diffusion-webui\models\Stable-diffusion\sd-v1-4.ckpt
Global Step: 470000
Traceback (most recent call last):
File "E:\workspace\02_Python\novalai\stable-diffusion-webui\launch.py", line 252, in <module>
start()
File "E:\workspace\02_Python\novalai\stable-diffusion-webui\launch.py", line 247, in start
webui.webui()
File "E:\workspace\02_Python\novalai\stable-diffusion-webui\webui.py", line 148, in webui
initialize()
File "E:\workspace\02_Python\novalai\stable-diffusion-webui\webui.py", line 83, in initialize
modules.sd_models.load_model()
File "E:\workspace\02_Python\novalai\stable-diffusion-webui\modules\sd_models.py", line 252, in load_model
sd_model.to(shared.device)
File "D:\anaconda3\envs\novelai\lib\site-packages\pytorch_lightning\core\mixins\device_dtype_mixin.py", line 113, in to
return super().to(*args, **kwargs)
File "D:\anaconda3\envs\novelai\lib\site-packages\torch\nn\modules\module.py", line 987, in to
return self._apply(convert)
File "D:\anaconda3\envs\novelai\lib\site-packages\torch\nn\modules\module.py", line 639, in _apply
module._apply(fn)
File "D:\anaconda3\envs\novelai\lib\site-packages\torch\nn\modules\module.py", line 639, in _apply
module._apply(fn)
File "D:\anaconda3\envs\novelai\lib\site-packages\torch\nn\modules\module.py", line 639, in _apply
module._apply(fn)
[Previous line repeated 2 more times]
File "D:\anaconda3\envs\novelai\lib\site-packages\torch\nn\modules\module.py", line 662, in _apply
param_applied = fn(param)
File "D:\anaconda3\envs\novelai\lib\site-packages\torch\nn\modules\module.py", line 985, in convert
return t.to(device, dtype if t.is_floating_point() or t.is_complex() else None, non_blocking)
torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB (GPU 0; 2.00 GiB total capacity; 1.68 GiB already allocated; 0 bytes free; 1.72 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
根据提示,先尝试用如下命令改变
pytorch
配置,仍旧报错!
setPYTORCH_CUDA_ALLOC_CONF=garbage_collection_threshold:0.6,max_split_size_mb:128
尝试增加代码
with torch.no_grad()
,使内存就不会分配参数梯度的空间,仍旧报错!
由于提示内存溢出,先通过控制面板->所有控制面板项->管理工具->系统信息,查看显卡内存大小。
官方推荐的显卡内存大小为4GB以上,而笔者的显卡内存只有2GB,显然GPU不符合要求。查看项目的命令选项,发现项目支持CPU计算
--use-cpu
。
(novelai) E:\workspace\02_Python\novalai\stable-diffusion-webui>python launch.py -h
Python 3.10.6 | packaged by conda-forge |(main, Oct 242022, 16:02:16)[MSC v.1916 64 bit (AMD64)]
Commit hash: b8f2dfed3c0085f1df359b9dc5b3841ddc2196f0
Installing requirements for Web UI
Launching Web UI with arguments: -h
usage: launch.py [-h][--config CONFIG][--ckpt CKPT][--ckpt-dir CKPT_DIR][--gfpgan-dir GFPGAN_DIR][--gfpgan-model GFPGAN_MODEL][--no-half][--no-half-vae][--no-progressbar-hiding][--max-batch-count MAX_BATCH_COUNT][--embeddings-dir EMBEDDINGS_DIR][--hypernetwork-dir HYPERNETWORK_DIR][--localizations-dir LOCALIZATIONS_DIR][--allow-code][--medvram][--lowvram][--lowram][--always-batch-cond-uncond][--unload-gfpgan][--precision {full,autocast}][--share][--ngrok NGROK][--ngrok-region NGROK_REGION][--enable-insecure-extension-access][--codeformer-models-path CODEFORMER_MODELS_PATH][--gfpgan-models-path GFPGAN_MODELS_PATH][--esrgan-models-path ESRGAN_MODELS_PATH][--bsrgan-models-path BSRGAN_MODELS_PATH][--realesrgan-models-path REALESRGAN_MODELS_PATH][--scunet-models-path SCUNET_MODELS_PATH][--swinir-models-path SWINIR_MODELS_PATH][--ldsr-models-path LDSR_MODELS_PATH][--clip-models-path CLIP_MODELS_PATH][--xformers][--force-enable-xformers][--deepdanbooru][--opt-split-attention][--opt-split-attention-invokeai][--opt-split-attention-v1][--disable-opt-split-attention][--use-cpu {all,sd,interrogate,gfpgan,swinir,esrgan,scunet,codeformer}[{all,sd,interrogate,gfpgan,swinir,esrgan,scunet,codeformer}...]][--listen][--port PORT][--show-negative-prompt][--ui-config-file UI_CONFIG_FILE][--hide-ui-dir-config][--freeze-settings][--ui-settings-file UI_SETTINGS_FILE][--gradio-debug][--gradio-auth GRADIO_AUTH][--gradio-img2img-tool {color-sketch,editor}][--opt-channelslast][--styles-file STYLES_FILE][--autolaunch][--theme THEME][--use-textbox-seed][--disable-console-progressbars][--enable-console-prompts][--vae-path VAE_PATH][--disable-safe-unpickle][--api][--nowebui][--ui-debug-mode][--device-id DEVICE_ID][--administrator][--cors-allow-origins CORS_ALLOW_ORIGINS][--tls-keyfile TLS_KEYFILE][--tls-certfile TLS_CERTFILE][--server-name SERVER_NAME]
options:
-h, --help show this help message and exit
--config CONFIG path to config which constructs model
--ckpt CKPT path to checkpoint of stable diffusion model;if specified, this checkpoint will be added to
the list of checkpoints and loaded
--ckpt-dir CKPT_DIR Path to directory with stable diffusion checkpoints
--gfpgan-dir GFPGAN_DIR
GFPGAN directory
--gfpgan-model GFPGAN_MODEL
GFPGAN model file name
--no-half do not switch the model to 16-bit floats
--no-half-vae do not switch the VAE model to 16-bit floats
--no-progressbar-hiding
do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware
acceleration in browser)
--max-batch-count MAX_BATCH_COUNT
maximum batch count value for the UI
--embeddings-dir EMBEDDINGS_DIR
embeddings directory for textual inversion (default: embeddings)
--hypernetwork-dir HYPERNETWORK_DIR
hypernetwork directory
--localizations-dir LOCALIZATIONS_DIR
localizations directory
--allow-code allow custom script execution from webui
--medvram enable stable diffusion model optimizations for sacrificing a little speed for low VRM usage
--lowvram enable stable diffusion model optimizations for sacrificing a lot of speed for very low VRM
usage
--lowram load stable diffusion checkpoint weights to VRAM instead of RAM
--always-batch-cond-uncond
disables cond/uncond batching that is enabled to save memory with --medvram or --lowvram
--unload-gfpgan does not do anything.
--precision {full,autocast}
evaluate at this precision
--share use share=True for gradio and make the UI accessible through their site
--ngrok NGROK ngrok authtoken, alternative to gradio --share
--ngrok-region NGROK_REGION
The region inwhich ngrok should start.
--enable-insecure-extension-access
enable extensions tab regardless of other options
--codeformer-models-path CODEFORMER_MODELS_PATH
Path to directory with codeformer model file(s).
--gfpgan-models-path GFPGAN_MODELS_PATH
Path to directory with GFPGAN model file(s).
--esrgan-models-path ESRGAN_MODELS_PATH
Path to directory with ESRGAN model file(s).
--bsrgan-models-path BSRGAN_MODELS_PATH
Path to directory with BSRGAN model file(s).
--realesrgan-models-path REALESRGAN_MODELS_PATH
Path to directory with RealESRGAN model file(s).
--scunet-models-path SCUNET_MODELS_PATH
Path to directory with ScuNET model file(s).
--swinir-models-path SWINIR_MODELS_PATH
Path to directory with SwinIR model file(s).
--ldsr-models-path LDSR_MODELS_PATH
Path to directory with LDSR model file(s).
--clip-models-path CLIP_MODELS_PATH
Path to directory with CLIP model file(s).
--xformers enable xformers for cross attention layers
--force-enable-xformers
enable xformers for cross attention layers regardless of whether the checking code thinks you
can run it;do not make bug reports if this fails to work
--deepdanbooru enable deepdanbooru interrogator
--opt-split-attention
force-enables Doggettx's cross-attention layer optimization. By default, it's on for torch
cuda.
--opt-split-attention-invokeai
force-enables InvokeAI's cross-attention layer optimization. By default, it's on when cuda is
unavailable.
--opt-split-attention-v1
enable older version of split attention optimization that does not consume all the VRAM it can
find
--disable-opt-split-attention
force-disables cross-attention layer optimization
--use-cpu {all,sd,interrogate,gfpgan,swinir,esrgan,scunet,codeformer}[{all,sd,interrogate,gfpgan,swinir,esrgan,scunet,codeformer}...]
use CPU as torch device for specified modules
--listen launch gradio with 0.0.0.0 as server name, allowing to respond to network requests
--port PORT launch gradio with given server port, you need root/admin rights for ports <1024, defaults to
7860if available
--show-negative-prompt
does not do anything
--ui-config-file UI_CONFIG_FILE
filename to use for ui configuration
--hide-ui-dir-config hide directory configuration from webui
--freeze-settings disable editing settings
--ui-settings-file UI_SETTINGS_FILE
filename to use for ui settings
--gradio-debug launch gradio with --debug option
--gradio-auth GRADIO_AUTH
set gradio authentication like "username:password"; or comma-delimit multiple like
"u1:p1,u2:p2,u3:p3"
--gradio-img2img-tool {color-sketch,editor}
gradio image uploader tool: can be either editor for ctopping, or color-sketch for drawing
--opt-channelslast change memory typefor stable diffusion to channels last
--styles-file STYLES_FILE
filename to use for styles
--autolaunch open the webui URL in the system's default browser upon launch
--theme THEME launches the UI with light or dark theme
--use-textbox-seed use textbox for seeds in UI (no up/down, but possible to input long seeds)
--disable-console-progressbars
do not output progressbars to console
--enable-console-prompts
print prompts to console when generating with txt2img and img2img
--vae-path VAE_PATH Path to Variational Autoencoders model
--disable-safe-unpickle
disable checking pytorch models for malicious code
--api use api=True to launch the api with the webui
--nowebui use api=True to launch the api instead of the webui
--ui-debug-mode Don't load model to quickly launch UI
--device-id DEVICE_ID
Select the default CUDA device to use (export CUDA_VISIBLE_DEVICES=0,1,etc might be needed
before)
--administrator Administrator rights
--cors-allow-origins CORS_ALLOW_ORIGINS
Allowed CORS origins
--tls-keyfile TLS_KEYFILE
Partially enables TLS, requires --tls-certfile to fully function
--tls-certfile TLS_CERTFILE
Partially enables TLS, requires --tls-keyfile to fully function
--server-name SERVER_NAME
Sets hostname of server
尝试构造如下运行参数,
--use-cpu all
使所有模块均使用CPU计算,
--lowram --always-batch-cond-uncond
使用低内存配置选项,程序可以成功运行。
(novelai) E:\workspace\02_Python\novalai\stable-diffusion-webui>python launch.py --lowram --always-batch-cond-uncond --use-cpu all
Python 3.10.6 | packaged by conda-forge |(main, Oct 242022, 16:02:16)[MSC v.1916 64 bit (AMD64)]
Commit hash: b8f2dfed3c0085f1df359b9dc5b3841ddc2196f0
Installing requirements for Web UI
Launching Web UI with arguments: --lowram --always-batch-cond-uncond --use-cpu all
Warning: caught exception 'Expected a cuda device, but got: cpu', memory monitor disabled
LatentDiffusion: Running in eps-prediction mode
DiffusionWrapper has 859.52 M params.
making attention of type'vanilla' with 512 in_channels
Working with z of shape (1, 4, 32, 32)=4096 dimensions.
making attention of type'vanilla' with 512 in_channels
Loading weights [7460a6fa] from E:\workspace\02_Python\novalai\stable-diffusion-webui\models\Stable-diffusion\sd-v1-4.ckpt
Global Step: 470000
Applying cross attention optimization (Doggettx).
Model loaded.
Loaded a total of 0 textual inversion embeddings.
Embeddings:
Running on local URL: http://127.0.0.1:7860
To create a public link, set`share=True`in`launch()`.
然而,开始作画时提示
RuntimeError: "LayerNormKernelImpl" not implemented for 'Half'
错误!如果安装网上的处理方法,将
half
函数在工程中替换为
float
函数,则会出现
device
不匹配问题。
Traceback (most recent call last):
File "E:\workspace\02_Python\novalai\stable-diffusion-webui\modules\ui.py", line 185, in f
res = list(func(*args, **kwargs))
File "E:\workspace\02_Python\novalai\stable-diffusion-webui\webui.py", line 57, in f
res = func(*args, **kwargs)
File "E:\workspace\02_Python\novalai\stable-diffusion-webui\modules\txt2img.py", line 48, in txt2img
processed = process_images(p)
File "E:\workspace\02_Python\novalai\stable-diffusion-webui\modules\processing.py", line 423, in process_images
res = process_images_inner(p)
File "E:\workspace\02_Python\novalai\stable-diffusion-webui\modules\processing.py", line 508, in process_images_inner
uc = prompt_parser.get_learned_conditioning(shared.sd_model, len(prompts) * [p.negative_prompt], p.steps)
File "E:\workspace\02_Python\novalai\stable-diffusion-webui\modules\prompt_parser.py", line 138, in get_learned_conditioning
conds = model.get_learned_conditioning(texts)
File "E:\workspace\02_Python\novalai\stable-diffusion-webui\repositories\stable-diffusion\ldm\models\diffusion\ddpm.py", line 558, in get_learned_conditioning
c = self.cond_stage_model(c)
File "D:\anaconda3\envs\novelai\lib\site-packages\torch\nn\modules\module.py", line 1190, in _call_impl
return forward_call(*input, **kwargs)
File "E:\workspace\02_Python\novalai\stable-diffusion-webui\modules\sd_hijack.py", line 338, in forward
z1 = self.process_tokens(tokens, multipliers)
File "E:\workspace\02_Python\novalai\stable-diffusion-webui\extensions\aesthetic-gradients\aesthetic_clip.py", line 202, in __call__
z = self.process_tokens(remade_batch_tokens, multipliers)
File "E:\workspace\02_Python\novalai\stable-diffusion-webui\modules\sd_hijack.py", line 353, in process_tokens
outputs = self.wrapped.transformer(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers)
File "D:\anaconda3\envs\novelai\lib\site-packages\torch\nn\modules\module.py", line 1190, in _call_impl
return forward_call(*input, **kwargs)
File "D:\anaconda3\envs\novelai\lib\site-packages\transformers\models\clip\modeling_clip.py", line 722, in forward
return self.text_model(
File "D:\anaconda3\envs\novelai\lib\site-packages\torch\nn\modules\module.py", line 1190, in _call_impl
return forward_call(*input, **kwargs)
File "D:\anaconda3\envs\novelai\lib\site-packages\transformers\models\clip\modeling_clip.py", line 643, in forward
encoder_outputs = self.encoder(
File "D:\anaconda3\envs\novelai\lib\site-packages\torch\nn\modules\module.py", line 1190, in _call_impl
return forward_call(*input, **kwargs)
File "D:\anaconda3\envs\novelai\lib\site-packages\transformers\models\clip\modeling_clip.py", line 574, in forward
layer_outputs = encoder_layer(
File "D:\anaconda3\envs\novelai\lib\site-packages\torch\nn\modules\module.py", line 1190, in _call_impl
return forward_call(*input, **kwargs)
File "D:\anaconda3\envs\novelai\lib\site-packages\transformers\models\clip\modeling_clip.py", line 316, in forward
hidden_states = self.layer_norm1(hidden_states)
File "D:\anaconda3\envs\novelai\lib\site-packages\torch\nn\modules\module.py", line 1190, in _call_impl
return forward_call(*input, **kwargs)
File "D:\anaconda3\envs\novelai\lib\site-packages\torch\nn\modules\normalization.py", line 190, in forward
return F.layer_norm(
File "D:\anaconda3\envs\novelai\lib\site-packages\torch\nn\functional.py", line 2515, in layer_norm
return torch.layer_norm(input, normalized_shape, weight, bias, eps, torch.backends.cudnn.enabled)
RuntimeError: "LayerNormKernelImpl" not implemented for'Half'
考虑到
--use-cpu
参数可以指定模块,则尝试使工程中的部分模块用CPU计算,其余在可用内存方位内用GPU计算,最终构造参数如下,项目可成功作画。
然而,此方式作画效率非常低,一般每张图片约5-6分钟。当参数设置较大时,会达到数小时。因此如果有条件可以升级计算机的显卡配置,或租赁云服务器效果会更好。
(novelai) E:\workspace\02_Python\novalai\stable-diffusion-webui>python launch.py --lowram --always-batch-cond-uncond --precision full --no-half --opt-split-attention-v1 --use-cpu sd --autolaunch
Python 3.10.6 | packaged by conda-forge |(main, Oct 242022, 16:02:16)[MSC v.1916 64 bit (AMD64)]
Commit hash: b8f2dfed3c0085f1df359b9dc5b3841ddc2196f0
Installing requirements for Web UI
Launching Web UI with arguments: --lowram --always-batch-cond-uncond --precision full --no-half --opt-split-attention-v1 --use-cpu sd
Warning: caught exception 'Expected a cuda device, but got: cpu', memory monitor disabled
LatentDiffusion: Running in eps-prediction mode
DiffusionWrapper has 859.52 M params.
making attention of type'vanilla' with 512 in_channels
Working with z of shape (1, 4, 32, 32)=4096 dimensions.
making attention of type'vanilla' with 512 in_channels
Loading weights [7460a6fa] from E:\workspace\02_Python\novalai\stable-diffusion-webui\models\Stable-diffusion\sd-v1-4.ckpt
Global Step: 470000
Applying v1 cross attention optimization.
Model loaded.
Loaded a total of 0 textual inversion embeddings.
Embeddings:
Running on local URL: http://127.0.0.1:7860
To create a public link, set`share=True`in`launch()`.100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████|20/20 [06:30<00:00, 19.50s/it]
Total progress: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████|20/20 [06:10<00:00, 18.51s/it]
参考文献:
AI作画保姆级教程来了!逆天,太强了!
【作者:墨叶扶风http://blog.csdn.net/yefufeng】
版权归原作者 yefufeng 所有, 如有侵权,请联系我们删除。