0


大数据相关招聘岗位可视化分析-毕业设计

数据分析案例-大数据相关招聘岗位可视化分析


✍🏻作者简介:机器学习,深度学习,卷积神经网络处理,图像处理
🚀B站项目实战:https://space.bilibili.com/364224477
😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收藏 📂加关注+
🤵‍♂代码获取:@个人主页


数据集介绍

本次数据集来源于xx招聘网共计4223条招聘信息,每条招聘信息字段包括岗位名称、公司名称、工作经验要求、学历要求、工作地点、薪酬、公司规模、发布时间、公司福利共9条字段信息。

数据预处理

首先导入本次数据集,

  1. import pandas as pd
  2. data = pd.read_csv('job_data.csv')
  3. data.head()

查看数据缺失值情况,

  1. data.isnull().sum()

通过缺失值情况,我们发现公司规模缺失值较多,而这个字段数据对于本次分析没有太大用处,故在这里直接删除这一列,对于其他少量缺失值,直接删除就好。

  1. data.drop('公司规模',axis=1,inplace=True)
  2. data.dropna(inplace=True)
  3. data.shape

接着就是处理数据集中的字段信息,便于后面的数据可视化

  1. # 处理工作经验要求
  2. data['工作经验要求'] = data['工作经验要求'].replace(to_replace=
  3. {'无需经验':'经验不限','经验在校/应届':'经验不限','1年经验':'1-3年','2年经验':'1-3年','经验1-3年':'1-3年',
  4. '经验1年以下':'1-3年','3-4年经验':'3-5年','经验3-5年':'3-5年','5-7年经验':'5-10年','经验5-10年':'5-10年',
  5. '8-9年经验':'5-10年','10年以上经验':'10年以上','经验10年以上':'10年以上'})
  6. # 处理学历要求
  7. data['学历要求'] = data['学历要求'].replace(to_replace={'大专':'专科及以下','高中':'专科及以下','不限':'专科及以下','中技/中专':'专科及以下'})
  8. # 获取工作城市
  9. data['工作城市'] = data['工作地点'].apply(lambda x:x.split('-')[0])
  10. data['工作城市'] = data['工作城市'].apply(lambda x:x.split('·')[0])
  11. def avg_salary(x):
  12. try:
  13. start = x.split('-')[0]
  14. end = x.split('-')[1]
  15. if end[-1] == '千':
  16. start_salary = float(start)*1000
  17. end_salary = float(end[:-1])*1000
  18. elif end[-1] == '万':
  19. if start[-1] == '千':
  20. start_salary = float(start[:-1])*1000
  21. end_salary = float(end[:-1])*10000
  22. else:
  23. start_salary = float(start)*10000
  24. end_salary = float(end[:-1])*10000
  25. elif end[-1] == 'k':
  26. start_salary = float(start[:-1])*1000
  27. end_salary = float(end[:-1])*1000
  28. elif end[-1] == '薪':
  29. salary_number = float(end.split('·')[1][:-1])
  30. if end.split('·')[0][-1] == '万':
  31. if start[-1] == '千':
  32. start_salary = float(start[:-1])*1000/12*salary_number
  33. end_salary = float(end.split('·')[0][:-1])*10000/12*salary_number
  34. else:
  35. start_salary = float(start)*10000/12*salary_number
  36. end_salary = float(end.split('·')[0][:-1])*10000/12*salary_number
  37. elif end.split('·')[0][-1] == '千':
  38. start_salary = float(start)*1000/12*salary_number
  39. end_salary = float(end.split('·')[0][:-1])*1000/12*salary_number
  40. elif end[-1] == '年':
  41. end = end[:-2]
  42. if end[-1] == '万':
  43. if start[-1] == '千':
  44. start_salary = float(start[:-1])*1000
  45. end_salary = float(end[:-1])*10000
  46. else:
  47. start_salary = float(start)*10000
  48. end_salary = float(end[:-1])*10000
  49. return (start_salary+end_salary)/2
  50. except:
  51. return 10000
  52. data['平均薪资'] = data['薪酬'].apply(avg_salary)
  53. data.head()

在这里,我把工作经验和学历要求进行了清洗整理,划分为固定的几个分类,然后提取了工作城市,以及处理了原始薪资数据(数据是真的很杂,需要花点时间来处理),最后得到平均薪资。

数据可视化

先导入数据可视化需要用到的第三方包,

  1. import pandas as pd
  2. import matplotlib.pyplot as plt
  3. from pyecharts.charts import *
  4. from pyecharts import options as opts
  5. from pyecharts.globals import ThemeType
  6. import warnings
  7. warnings.filterwarnings('ignore')
  8. plt.rcParams['font.sans-serif']=['SimHei'] #显示中文标签
  9. plt.rcParams['axes.unicode_minus']=False

分析各工作经验要求占比

  1. # 工作经验要求
  2. df1 = data['工作经验要求'].value_counts()
  3. a1 = Pie(init_opts=opts.InitOpts(theme = ThemeType.DARK))
  4. a1.add(series_name='工作经验要求',
  5. data_pair=[list(z) for z in zip(df1.index.to_list(),df1.values.tolist())],
  6. radius='70%',
  7. )
  8. a1.set_global_opts(title_opts=opts.TitleOpts(title="工作经验要求占比",
  9. pos_left='center',
  10. pos_top=30))
  11. a1.set_series_opts(tooltip_opts=opts.TooltipOpts(trigger='item',formatter='{a} <br/>{b}:{c} ({d}%)'))
  12. a1.render_notebook()

通过图表我们发现,除了10年以上,其他区间的经验要求占比相差不大,说明各个区间的经验要求需求岗位量大体相似。

** 分析不同工作经验的岗位数量和薪资变化**

  1. x = ['经验不限','1-3年','3-5年','5-10年','10年以上']
  2. bar =Bar()
  3. bar.add_xaxis(x)
  4. bar.add_yaxis('岗位数量',[399,724,870,535,27],label_opts=opts.LabelOpts(is_show=False))
  5. bar.set_global_opts(
  6. title_opts=opts.TitleOpts('不同工作经验的岗位数量和薪资变化'),
  7. tooltip_opts=opts.TooltipOpts(is_show=True,trigger='axis',axis_pointer_type='cross'),
  8. xaxis_opts= opts.AxisOpts(type_='category',axispointer_opts=opts.AxisPointerOpts(is_show=True,type_='shadow'))
  9. )
  10. bar.extend_axis(yaxis=opts.AxisOpts(
  11. name='月薪',min_=0,max_= 110000,
  12. interval = 10000
  13. ))
  14. line = Line()
  15. line.add_xaxis(x)
  16. line.add_yaxis('平均薪资',[18468,17011,32701,40371,101429],yaxis_index=1,label_opts=opts.LabelOpts(is_show=False))
  17. bar.overlap(line) # 合并图
  18. bar.render_notebook()

通过图表,我们发现经验要求的需求量大体呈正态分布,薪酬是随着经验年限的增长而逐渐递增。

分析不同学历要求占比

  1. # 学历要求
  2. df2 = data['学历要求'].value_counts()
  3. a2 = Pie(init_opts=opts.InitOpts(theme = ThemeType.DARK))
  4. a2.add(series_name='学历要求',
  5. data_pair=[list(z) for z in zip(df2.index.to_list(),df2.values.tolist())],
  6. radius='70%',
  7. )
  8. a2.set_global_opts(title_opts=opts.TitleOpts(title="学历要求占比",
  9. pos_left='center',
  10. pos_top=30))
  11. a2.set_series_opts(tooltip_opts=opts.TooltipOpts(trigger='item',formatter='{a} <br/>{b}:{c} ({d}%)'))
  12. a2.render_notebook()

通过图表我们发现,本科学历占据了65%,本科及以下共高达95%,对于学历这块,要求似乎要求不是很高。

分析不同学历要求的岗位数量和薪酬变化

  1. x = ['专科及以下','本科','硕士','博士']
  2. bar =Bar()
  3. bar.add_xaxis(x)
  4. bar.add_yaxis('岗位数量',[684,1753,109,9],label_opts=opts.LabelOpts(is_show=False))
  5. bar.set_global_opts(
  6. title_opts=opts.TitleOpts('不同学历要求的岗位数量和薪资变化'),
  7. tooltip_opts=opts.TooltipOpts(is_show=True,trigger='axis',axis_pointer_type='cross'),
  8. xaxis_opts= opts.AxisOpts(type_='category',axispointer_opts=opts.AxisPointerOpts(is_show=True,type_='shadow'))
  9. )
  10. bar.extend_axis(yaxis=opts.AxisOpts(
  11. name='月薪',min_=0,max_= 45000
  12. ))
  13. line = Line()
  14. line.add_xaxis(x)
  15. line.add_yaxis('平均薪资',[11888,33784,44118,34148],yaxis_index=1,label_opts=opts.LabelOpts(is_show=False))
  16. bar.overlap(line) # 合并图
  17. bar.render_notebook()

随着学历的增长,薪资也在增长,这里博士学历应该是数据量太少导致出现了下滑异常,总体趋势肯定还是学历越高,薪资越高。

**分析岗位需求量最高的前五名公司 **

  1. data['公司名称'].value_counts().head().plot(kind='barh')
  2. plt.title('岗位需求量最高的前五名公司')
  3. plt.show()

岗位需求量大的公司貌似都集中在深圳北京等一线城市。

词云图可视化

先定义一个制作词云图的函数

  1. import jieba
  2. import collections
  3. import re
  4. import stylecloud
  5. from PIL import Image
  6. # 封装一个画词云图的函数
  7. def draw_WorldCloud(df,pic_name,color='black'):
  8. data = ''.join([item for item in df])
  9. # 文本预处理 :去除一些无用的字符只提取出中文出来
  10. new_data = re.findall('[\u4e00-\u9fa5]+', data, re.S)
  11. new_data = "".join(new_data)
  12. # 文本分词
  13. seg_list_exact = jieba.cut(new_data, cut_all=True)
  14. result_list = []
  15. with open('停用词库.txt', encoding='utf-8') as f: #可根据需要打开停用词库,然后加上不想显示的词语
  16. con = f.readlines()
  17. stop_words = set()
  18. for i in con:
  19. i = i.replace("\n", "") # 去掉读取每一行数据的\n
  20. stop_words.add(i)
  21. for word in seg_list_exact:
  22. if word not in stop_words and len(word) > 1:
  23. result_list.append(word)
  24. word_counts = collections.Counter(result_list)
  25. # 词频统计:获取前100最高频的词
  26. word_counts_top = word_counts.most_common(100)
  27. print(word_counts_top)
  28. # 绘制词云图
  29. stylecloud.gen_stylecloud(text=' '.join(result_list),
  30. collocations=False, # 是否包括两个单词的搭配(二字组)
  31. font_path=r'C:\Windows\Fonts\msyh.ttc', #设置字体
  32. size=800, # stylecloud 的大小
  33. palette='cartocolors.qualitative.Bold_7', # 调色板
  34. background_color=color, # 背景颜色
  35. icon_name='fas fa-circle', # 形状的图标名称
  36. gradient='horizontal', # 梯度方向
  37. max_words=2000, # stylecloud 可包含的最大单词数
  38. max_font_size=150, # stylecloud 中的最大字号
  39. stopwords=True, # 布尔值,用于筛除常见禁用词
  40. output_name=f'{pic_name}.png') # 输出图片
  41. # 打开图片展示
  42. img=Image.open(f'{pic_name}.png')
  43. img.show()

接着使用岗位名称数据来进行词云图可视化,看看大数据相关岗位的情况

  1. draw_WorldCloud(data['职位名称'],'大数据职位名称词云图')

通过词云图发现,大数据相关岗位大体主要分为数据分析、大数据开发、架构师等。

使用公司福利数据来词云图分析一下

  1. draw_WorldCloud(data['公司福利'],'公司福利词云图')

通过词云图看出,大数据相关岗位福利主要为各种奖金、补贴、培训等等。

通过热力地图分析各城市岗位分布

  1. df3 = data['工作城市'].value_counts()
  2. city_data = city_data = [[x+'市',y] if x[-3:] != '自治州' else [x,y] for x,y in zip(df3.index.to_list(),df3.values.tolist())]
  3. map = Map()
  4. map.add('地区',city_data,
  5. maptype='china-cities',
  6. is_map_symbol_show=False,
  7. label_opts=opts.LabelOpts(is_show=False))
  8. map.set_global_opts(
  9. title_opts=opts.TitleOpts('各城市岗位数量分布'),
  10. visualmap_opts=opts.VisualMapOpts(max_=100,min_=1)
  11. )
  12. map.render(path='各城市岗位数量分布.html')
  13. map.render_notebook()

通过热力地图我们看出,大数据岗位在上海,北京、深圳等城市需求量较高 。(热力地图如在手机端无法查看可用PC端打开查看)
✍🏻作者简介:机器学习,深度学习,卷积神经网络处理,图像处理
🚀B站项目实战:https://space.bilibili.com/364224477
😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收藏 📂加关注+
🤵‍♂代码获取:@个人主页


本文转载自: https://blog.csdn.net/purple_love/article/details/135577458
版权归原作者 Jackie_AI 所有, 如有侵权,请联系我们删除。

“大数据相关招聘岗位可视化分析-毕业设计”的评论:

还没有评论