0


PPOCRv3模型转pytorch

序言

前段时间PaddleOCRv3版本发布,更新了检测和识别模型,性能有很大提升,本着能嫖就嫖的原则,刚出来的第一天就开始嫖上了,虽然新模型的性能相较于之前有较大提升,但是乍一看模型结构复杂了很多,部署起来要麻烦了很多,现阶段paddle框架转其他部署框架只能通过转paddle2onnx再转其他框架实现,所以打算踩下坑,提供import paddle as torch版本的模型:将paddle框架的模型权重转到pytorch上,为部署方案提供多一些选择,转换到pytorch框架上后可以通过从pytorch再转其他部署方式,举个之前的例子:使用pnnx把pytorch模型转ncnn模型。

与之前的模型性能对比:
在这里插入图片描述
本项目代码实现基于:

一、paddle2torch

先说下转换原理,因为paddlepaddle和pytorch都是动态框架,所以转换起来比较简单,对于要转换的paddle模型,我们只需要用torch重新构建相同的网络模型结构,然后将paddle的权重取出,一一对应赋值进每一层。看似过程比较简单,但是毕竟是不同的框架,有些op实现也是不同的,难免会踩很多坑。

在转换之前,我们先看一下PaddleOCRV3相对于上一个版本的模型更新了那些模块:
首先是检测模型:

检测模块

  1. LK-PAN:大感受野的PAN结构
  2. DML:教师模型互学习策略
  3. RSE-FPN:残差注意力机制的FPN结构

识别模块

  • SVTR_LCNet:轻量级文本识别网络
  • GTC:Attention指导CTC训练策略
  • TextConAug:挖掘文字上下文信息的数据增广策略
  • TextRotNet:自监督的预训练模型
  • UDML:联合互学习策略
  • UIM:无标注数据挖掘方案

具体的可以看PPOCRV3官方的技术报告,在这里我们只需要关注我们转换的过程需要注意的那些模块即可

二、检测模型转换

首先是检测模块,检测模块有三部分更新,我们只需要关注RSE-FPN,因为前两个都是在训练过程中蒸馏学习对教师模型的优化。

RSE-FPN(Residual Squeeze-and-Excitation FPN)如下图所示,引入残差结构和通道注意力结构,将FPN中的卷积层更换为通道注意力结构的RSEConv层,进一步提升特征图的表征能力。考虑到PP-OCRv2的检测模型中FPN通道数非常小,仅为96,如果直接用SEblock代替FPN中卷积会导致某些通道的特征被抑制,精度会下降。RSEConv引入残差结构会缓解上述问题,提升文本检测效果。进一步将PP-OCRv2中CML的学生模型的FPN结构更新为RSE-FPN,学生模型的hmean可以进一步从84.3%提升到85.4%:
在这里插入图片描述
RSE-FPN pytorch代码实现:

classRSELayer(nn.Module):def__init__(self, in_channels, out_channels, kernel_size, shortcut=True):super(RSELayer, self).__init__()
        self.out_channels = out_channels
        self.in_conv = nn.Conv2d(
            in_channels=in_channels,
            out_channels=self.out_channels,
            kernel_size=kernel_size,
            padding=int(kernel_size //2),
            bias=False)
        self.se_block = SEBlock(self.out_channels,self.out_channels)
        self.shortcut = shortcut

    defforward(self, ins):
        x = self.in_conv(ins)if self.shortcut:
            out = x + self.se_block(x)else:
            out = self.se_block(x)return out

classRSEFPN(nn.Module):def__init__(self, in_channels, out_channels=256, shortcut=True,**kwargs):super(RSEFPN, self).__init__()
        self.out_channels = out_channels
        self.ins_conv = nn.ModuleList()
        self.inp_conv = nn.ModuleList()for i inrange(len(in_channels)):
            self.ins_conv.append(
                RSELayer(
                    in_channels[i],
                    out_channels,
                    kernel_size=1,
                    shortcut=shortcut))
            self.inp_conv.append(
                RSELayer(
                    out_channels,
                    out_channels //4,
                    kernel_size=3,
                    shortcut=shortcut))def_upsample_add(self, x, y):return F.interpolate(x, scale_factor=2)+ y

    def_upsample_cat(self, p2, p3, p4, p5):
        p3 = F.interpolate(p3, scale_factor=2)
        p4 = F.interpolate(p4, scale_factor=4)
        p5 = F.interpolate(p5, scale_factor=8)return torch.cat([p5, p4, p3, p2], dim=1)defforward(self, x):
        c2, c3, c4, c5 = x

        in5 = self.ins_conv[3](c5)
        in4 = self.ins_conv[2](c4)
        in3 = self.ins_conv[1](c3)
        in2 = self.ins_conv[0](c2)

        out4 = self._upsample_add(in5, in4)
        out3 = self._upsample_add(out4, in3)
        out2 = self._upsample_add(out3, in2)

        p5 = self.inp_conv[3](in5)
        p4 = self.inp_conv[2](out4)
        p3 = self.inp_conv[1](out3)
        p2 = self.inp_conv[0](out2)

        x = self._upsample_cat(p2, p3, p4, p5)return x

完整的网络分为三部分:Backbone(MobileNetV3)、Neck(RSEFPN)、Head(DBHead),借助于PytorchOCR项目,将这三部分分别实现,然后将网络搭建。

from torch import nn
from det.DetMobilenetV3 import MobileNetV3
from det.DB_fpn import DB_fpn,RSEFPN,LKPAN
from det.DetDbHead import DBHead

backbone_dict ={'MobileNetV3': MobileNetV3}
neck_dict ={'DB_fpn': DB_fpn,'RSEFPN':RSEFPN,'LKPAN':LKPAN}
head_dict ={'DBHead': DBHead}classDetModel(nn.Module):def__init__(self, config):super().__init__()assert'in_channels'in config,'in_channels must in model config'
        backbone_type = config.backbone.pop('type')assert backbone_type in backbone_dict,f'backbone.type must in {backbone_dict}'
        self.backbone = backbone_dict[backbone_type](config.in_channels,**config.backbone)

        neck_type = config.neck.pop('type')assert neck_type in neck_dict,f'neck.type must in {neck_dict}'
        self.neck = neck_dict[neck_type](self.backbone.out_channels,**config.neck)

        head_type = config.head.pop('type')assert head_type in head_dict,f'head.type must in {head_dict}'
        self.head = head_dict[head_type](self.neck.out_channels,**config.head)

        self.name =f'DetModel_{backbone_type}_{neck_type}_{head_type}'defload_3rd_state_dict(self, _3rd_name, _state):
        self.backbone.load_3rd_state_dict(_3rd_name, _state)
        self.neck.load_3rd_state_dict(_3rd_name, _state)
        self.head.load_3rd_state_dict(_3rd_name, _state)defforward(self, x):
        x = self.backbone(x)
        x = self.neck(x)
        x = self.head(x)return x

if __name__=="__main__":
    db_config = AttrDict(
        in_channels=3,
        backbone=AttrDict(type='MobileNetV3', model_name='large',scale=0.5,pretrained=True),
        neck=AttrDict(type='RSEFPN', out_channels=96),
        head=AttrDict(type='DBHead'))

    model = DetModel(db_config)

然后使用paddleOCRV3的文字检测训练模型(注意只能用训练模型),将模型的权重和对应的键值取出,分别对应初始化到torch模型中,完整代码在文后链接。

defload_state(path,trModule_state):"""
    记载paddlepaddle的参数
    :param path:
    :return:
    """if os.path.exists(path +'.pdopt'):# XXX another hack to ignore the optimizer state
        tmp = tempfile.mkdtemp()
        dst = os.path.join(tmp, os.path.basename(os.path.normpath(path)))
        shutil.copy(path +'.pdparams', dst +'.pdparams')
        state = fluid.io.load_program_state(dst)
        shutil.rmtree(tmp)else:
        state = fluid.io.load_program_state(path)# for i, key in enumerate(state.keys()):#     print("{}  {} ".format(i, key))

    state_dict ={}for i, key inenumerate(state.keys()):if key =="StructuredToParameterName@@":continue
        state_dict[trModule_state[i]]= torch.from_numpy(state[key])return state_dict

三、识别模型转换

识别模型的转换相对于检测模型要复杂很多,PP-OCRv3的识别模块是基于文本识别算法SVTR优化。SVTR不再采用RNN结构,通过引入Transformers结构更加有效地挖掘文本行图像的上下文信息,从而提升文本识别能力,上面的诸多识别优化中,我们只需要关注第一个优化:SVTR_LCNet,其他的都是训练过程中的训练技巧,在模型转换的过程中不需要用到。

SVTR_LCNet是针对文本识别任务,将基于Transformer的SVTR网络和轻量级CNN网络PP-LCNet 融合的一种轻量级文本识别网络,整体网络如下所示:
在这里插入图片描述
使用该网络,预测速度优于PP-OCRv2的识别模型20%,但是由于没有采用蒸馏策略,该识别模型效果略差。此外,进一步将输入图片规范化高度从32提升到48,预测速度稍微变慢,但是模型效果大幅提升,识别准确率达到73.98%(+2.08%),接近PP-OCRv2采用蒸馏策略的识别模型效果,消融实验过程:
在这里插入图片描述

同样的,根据paddle的识别网络结构构建torch网络模型,模型分为三部分:Backbone(LCNet)、Encoder(SVTR Transformers)、Head(MultiHead),其中Encoder部分使用了SVTR的Transformers结构编码:

classEncoderWithSVTR(nn.Module):def__init__(
            self,
            in_channels,
            dims=64,# XS
            depth=2,
            hidden_dims=120,
            use_guide=False,
            num_heads=8,
            qkv_bias=True,
            mlp_ratio=2.0,
            drop_rate=0.1,
            attn_drop_rate=0.1,
            drop_path=0.,
            qk_scale=None):super(EncoderWithSVTR, self).__init__()
        self.depth = depth
        self.use_guide = use_guide
        self.conv1 = ConvBNLayer(
            in_channels, in_channels //8, padding=1)
        self.conv2 = ConvBNLayer(
            in_channels //8, hidden_dims, kernel_size=1)

        self.svtr_block = nn.ModuleList([
            Block(
                dim=hidden_dims,
                num_heads=num_heads,
                mixer='Global',
                HW=None,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop=drop_rate,
                act_layer="Swish",
                attn_drop=attn_drop_rate,
                drop_path=drop_path,
                norm_layer='nn.LayerNorm',
                epsilon=1e-05,
                prenorm=False)for i inrange(depth)])
        self.norm = nn.LayerNorm(hidden_dims, eps=1e-6)
        self.conv3 = ConvBNLayer(
            hidden_dims, in_channels, kernel_size=1)# last conv-nxn, the input is concat of input tensor and conv3 output tensor
        self.conv4 = ConvBNLayer(2* in_channels, in_channels //8, padding=1)

        self.conv1x1 = ConvBNLayer(
            in_channels //8, dims, kernel_size=1)
        self.out_channels = dims
        self.apply(self._init_weights)def_init_weights(self, m):ifisinstance(m, nn.Linear):
            trunc_normal_(m.weight)ifisinstance(m, nn.Linear)and m.bias isnotNone:
                zeros_(m.bias)elifisinstance(m, nn.LayerNorm):
            zeros_(m.bias)
            ones_(m.weight)defforward(self, x):# for use guideif self.use_guide:
            z = x.clone()
            z.stop_gradient =Trueelse:
            z = x
        # for short cut
        h = z
        # reduce dim
        z = self.conv1(z)
        z = self.conv2(z)# SVTR global block
        B, C, H, W = z.shape
        z = z.flatten(2).permute([0,2,1])for blk in self.svtr_block:
            z = blk(z)
        z = self.norm(z)# last stage
        z = z.reshape([-1, H, W, C]).permute([0,3,1,2])
        z = self.conv3(z)
        z = torch.cat((h, z), dim=1)
        z = self.conv1x1(self.conv4(z))return z

Head部分是一个多头,但是在推理的时候实际上也只用了CTCHead,把训练时候的SARHead去掉了,所以这部分不需要在网络构建时加进去。

classMultiHead(nn.Module):def__init__(self, in_channels,**kwargs):super().__init__()
        self.out_c = kwargs.get('n_class')
        self.head_list = kwargs.get('head_list')
        self.gtc_head ='sar'# assert len(self.head_list) >= 2for idx, head_name inenumerate(self.head_list):# name = list(head_name)[0]
            name = head_name
            if name =='SARHead':# sar head
                sar_args = self.head_list[name]
                self.sar_head =eval(name)(in_channels=in_channels, out_channels=self.out_c,**sar_args)if name =='CTC':# ctc neck
                self.encoder_reshape = Im2Seq(in_channels)
                neck_args = self.head_list[name]['Neck']
                encoder_type = neck_args.pop('name')
                self.encoder = encoder_type
                self.ctc_encoder = SequenceEncoder(in_channels=in_channels,encoder_type=encoder_type,**neck_args)# ctc head
                head_args = self.head_list[name]
                self.ctc_head =eval(name)(in_channels=self.ctc_encoder.out_channels,n_class=self.out_c,**head_args)else:raise NotImplementedError('{} is not supported in MultiHead yet'.format(name))defforward(self, x, targets=None):
        ctc_encoder = self.ctc_encoder(x)
        ctc_out = self.ctc_head(ctc_encoder, targets)
        head_out =dict()
        head_out['ctc']= ctc_out
        head_out['ctc_neck']= ctc_encoder
        return ctc_out                          # infer   不经过SAR直接返回# # eval mode# print(not self.training)# if not self.training:                 # training#     return ctc_out# if self.gtc_head == 'sar':#     sar_out = self.sar_head(x, targets[1:])#     head_out['sar'] = sar_out#     return head_out# else:#     return head_out

完整的网络构建:

from torch import nn

from rec.RNN import SequenceEncoder, Im2Seq,Im2Im
from rec.RecSVTR import SVTRNet
from rec.RecMv1_enhance import MobileNetV1Enhance

from rec.RecCTCHead import CTC,MultiHead

backbone_dict ={"SVTR":SVTRNet,"MobileNetV1Enhance":MobileNetV1Enhance}
neck_dict ={'PPaddleRNN': SequenceEncoder,'Im2Seq': Im2Seq,'None':Im2Im}
head_dict ={'CTC': CTC,'Multi':MultiHead}classRecModel(nn.Module):def__init__(self, config):super().__init__()assert'in_channels'in config,'in_channels must in model config'
        backbone_type = config.backbone.pop('type')assert backbone_type in backbone_dict,f'backbone.type must in {backbone_dict}'
        self.backbone = backbone_dict[backbone_type](config.in_channels,**config.backbone)

        neck_type = config.neck.pop('type')assert neck_type in neck_dict,f'neck.type must in {neck_dict}'
        self.neck = neck_dict[neck_type](self.backbone.out_channels,**config.neck)

        head_type = config.head.pop('type')assert head_type in head_dict,f'head.type must in {head_dict}'
        self.head = head_dict[head_type](self.neck.out_channels,**config.head)

        self.name =f'RecModel_{backbone_type}_{neck_type}_{head_type}'defload_3rd_state_dict(self, _3rd_name, _state):
        self.backbone.load_3rd_state_dict(_3rd_name, _state)
        self.neck.load_3rd_state_dict(_3rd_name, _state)
        self.head.load_3rd_state_dict(_3rd_name, _state)defforward(self, x):
        x = self.backbone(x)
        x = self.neck(x)
        x = self.head(x)return x

if __name__=="__main__":

    rec_config = AttrDict(
        in_channels=3,
        backbone=AttrDict(type='MobileNetV1Enhance', scale=0.5,last_conv_stride=[1,2],last_pool_type='avg'),
        neck=AttrDict(type='None'),
   head=AttrDict(type='Multi',head_list=AttrDict(CTC=AttrDict(Neck=AttrDict(name="svtr",dims=64,depth=2,hidden_dims=120,use_guide=True)),# SARHead=AttrDict(enc_dim=512,max_text_length=70)),
                      n_class=6625))

    model = RecModel(rec_config)

同样的,加载paddleocrv3的识别训练模型,将权重对应键值取出,初始化到torch模型中,但是这里需要注意的是,paddle中的全链接层和torch中全链接层的权重形状问题,paddle的全链接层赋值到torch的全链接层的时候,权重需要做一个转置transpose():

defload_state(path,trModule_state):"""
    记载paddlepaddle的参数
    :param path:
    :return:
    """if os.path.exists(path +'.pdopt'):# XXX another hack to ignore the optimizer state
        tmp = tempfile.mkdtemp()
        dst = os.path.join(tmp, os.path.basename(os.path.normpath(path)))
        shutil.copy(path +'.pdparams', dst +'.pdparams')
        state = fluid.io.load_program_state(dst)
        shutil.rmtree(tmp)else:
        state = fluid.io.load_program_state(path)# for i, key in enumerate(state.keys()):#     print("{}  {} ".format(i, key))
    keys =["head.ctc_encoder.encoder.svtr_block.0.mixer.qkv.weight","head.ctc_encoder.encoder.svtr_block.0.mixer.proj.weight","head.ctc_encoder.encoder.svtr_block.0.mlp.fc1.weight","head.ctc_encoder.encoder.svtr_block.0.mlp.fc2.weight","head.ctc_encoder.encoder.svtr_block.1.mixer.qkv.weight","head.ctc_encoder.encoder.svtr_block.1.mixer.proj.weight","head.ctc_encoder.encoder.svtr_block.1.mlp.fc1.weight","head.ctc_encoder.encoder.svtr_block.1.mlp.fc2.weight","head.ctc_head.fc.weight",]

    state_dict ={}for i, key inenumerate(state.keys()):if key =="StructuredToParameterName@@":continueif i >238:
            j = i-239if j <=195:if trModule_state[j]in keys:
                    state_dict[trModule_state[j]]= torch.from_numpy(state[key]).transpose(0,1)else:
                    state_dict[trModule_state[j]]= torch.from_numpy(state[key])return state_dict

paddleocr的训练模型链接PaddleOCR:
在这里插入图片描述
完整代码已经扔到github上,欢迎白嫖学习。

paddle2torch_PPOCRv3


本文转载自: https://blog.csdn.net/qq_39056987/article/details/124921515
版权归原作者 三叔家的猫 所有, 如有侵权,请联系我们删除。

“PPOCRv3模型转pytorch”的评论:

还没有评论