0


List详解

一、List的介绍

  1. list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。
  2. list的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前一个元素和后一个元素。
  3. list与forward_list非常相似:最主要的不同在于forward_list是单链表,只能朝前迭代,已让其更简单高效。
  4. 与其他的序列式容器相比(array,vector,deque),list通常在任意位置进行插入、移除元素的执行效率更好。
  5. 与其他序列式容器相比,list和forward_list最大的缺陷是不支持任意位置的随机访问,比如:要访问list的第6个元素,必须从已知的位置(比如头部或者尾部)迭代到该位置,在这段位置上迭代需要线性的时间开销;list还需要一些额外的空间,以保存每个节点的相关联信息(对于存储类型较小元素的大list来说这可能是一个重要的因素)

List原文档,我们可以去cplusplus网站去查看详情

cplusplus.com/reference/list/list/?kw=list

二、List的使用

list中的接口比较多,此处类似,只需要掌握如何正确的使用,然后再去深入研究背后的原理,已达到可扩展的能力。以下为list中一些常见的重要接口。

2.1、List的构造函数

构造函数( (constructor))接口说明list (size_type n, const value_type& val = value_type())构造的list中包含n个值为val的元素list()构造空的listlist (const list& x)拷贝构造函数list (InputIterator first, InputIterator last)用[first, last)区间中的元素构造list

// list的构造
void TestList1()
{
    list<int> l1;                         // 构造空的l1
    list<int> l2(4, 100);                 // l2中放4个值为100的元素
    list<int> l3(l2.begin(), l2.end());  // 用l2的[begin(), end())左闭右开的区间构造l3
    list<int> l4(l3);                    // 用l3拷贝构造l4

    // 以数组为迭代器区间构造l5
    int array[] = { 16,2,77,29 };
    list<int> l5(array, array + sizeof(array) / sizeof(int));

    // 列表格式初始化C++11
    list<int> l6{ 1,2,3,4,5 };

    // 用迭代器方式打印l5中的元素
    list<int>::iterator it = l5.begin();
    while (it != l5.end())
    {
        cout << *it << " ";
        ++it;
    }       
    cout << endl;

    // C++11范围for的方式遍历
    for (auto& e : l5)
        cout << e << " ";

    cout << endl;
}

2.2、List迭代器的使用

这里的迭代器我们可以理解为一个指针,是对指针进行了重命名为iterator,该指针指向List中的某个节点。
函数声明接口说明begin +end返回第一个元素的迭代器+返回最后一个元素下一个位置的迭代器rbegin +rend返回第一个元素的reverse_iterator,即end位置,返回最后一个元素下一个位置的
reverse_iterator,即begin位置
1. begin与end为正向迭代器,对迭代器执行++操作,迭代器向后移动
2. rbegin(end)与rend(begin)为反向迭代器,对迭代器执行++操作,迭代器向前移动

// list迭代器的使用
// 注意:遍历链表只能用迭代器和范围for
void PrintList(const list<int>& l)
{
    // 注意这里调用的是list的 begin() const,返回list的const_iterator对象
    for (list<int>::const_iterator it = l.begin(); it != l.end(); ++it)
    {
        cout << *it << " ";
        // *it = 10; 编译不通过
    }

    cout << endl;
}

void TestList2()
{
    int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
    list<int> l(array, array + sizeof(array) / sizeof(array[0]));
    // 使用正向迭代器正向list中的元素
    // list<int>::iterator it = l.begin();   // C++98中语法
    auto it = l.begin();                     // C++11之后推荐写法
    while (it != l.end())
    {
        cout << *it << " ";
        ++it;
    }
    cout << endl;

    // 使用反向迭代器逆向打印list中的元素
    // list<int>::reverse_iterator rit = l.rbegin();
    auto rit = l.rbegin();
    while (rit != l.rend())
    {
        cout << *rit << " ";
        ++rit;
    }
    cout << endl;
}

** 2.3、List反向迭代器**

反向迭代器的++就是正向迭代器的--,反向迭代器的--就是正向迭代器的++,因此反向迭
代器的实现可以借助正向迭代器,即:反向迭代器内部可以包含一个正向迭代器,对正向迭代器的接口进行包装即可。

template<class Iterator>
class ReverseListIterator
{
// 注意:此处typename的作用是明确告诉编译器,Ref是Iterator类中的类型,而不是静态成员变量
// 否则编译器编译时就不知道Ref是Iterator中的类型还是静态成员变量
// 因为静态成员变量也是按照 类名::静态成员变量名 的方式访问的
public:
    typedef typename Iterator::Ref Ref;
    typedef typename Iterator::Ptr Ptr;
    typedef ReverseListIterator<Iterator> Self;
public:
//
// 构造
    ReverseListIterator(Iterator it): _it(it){}
//
// 具有指针类似行为
    Ref operator*()
    {
        Iterator temp(_it);
        --temp;
        return *temp;
    }
    Ptr operator->(){ return &(operator*());}
//
// 迭代器支持移动
    Self& operator++()
    {

        --_it;
        return *this;
    }
    Self operator++(int)
    {
        Self temp(*this);
        --_it;
    return temp;
    }
    Self& operator--()
    {
        ++_it;
        return *this;
    }
    Self operator--(int)
    {
        Self temp(*this);
        ++_it;
        return temp;
    }
    //
// 迭代器支持比较
    bool operator!=(const Self& l)const{ return _it != l._it;}
    bool operator==(const Self& l)const{ return _it != l._it;}
    Iterator _it;
};

2.4、List常用接口函数

函数声明接口说明empty检测list是否为空,是返回true,否则返回falsesize返回list中有效节点的个数函数声明接口说明front返回list的第一个节点中值的引用back返回list的最后一个节点中值的引用函数声明接口说明push_front在list首元素前插入值为val的元素pop_front删除list中第一个元素push_back在list尾部插入值为val的元素pop_back删除list中最后一个元素insert在list position 位置中插入值为val的元素erase删除list position位置的元素swap交换两个list中的元素clear清空list中的有效元素

List还有很多函数接口,需要的话可以去cplusplus.com/reference/list/list/?kw=list查看原文档

// list插入和删除
// push_back/pop_back/push_front/pop_front
void TestList3()
{
    int array[] = { 1, 2, 3 };
    list<int> L(array, array + sizeof(array) / sizeof(array[0]));

    // 在list的尾部插入4,头部插入0
    L.push_back(4);
    L.push_front(0);
    PrintList(L);

    // 删除list尾部节点和头部节点
    L.pop_back();
    L.pop_front();
    PrintList(L);
}

// insert /erase 
void TestList4()
{
    int array1[] = { 1, 2, 3 };
    list<int> L(array1, array1 + sizeof(array1) / sizeof(array1[0]));

    // 获取链表中第二个节点
    auto pos = ++L.begin();
    cout << *pos << endl;

    // 在pos前插入值为4的元素
    L.insert(pos, 4);
    PrintList(L);

    // 在pos前插入5个值为5的元素
    L.insert(pos, 5, 5);
    PrintList(L);

    // 在pos前插入[v.begin(), v.end)区间中的元素
    vector<int> v{ 7, 8, 9 };
    L.insert(pos, v.begin(), v.end());
    PrintList(L);

    // 删除pos位置上的元素
    L.erase(pos);
    PrintList(L);

    // 删除list中[begin, end)区间中的元素,即删除list中的所有元素
    L.erase(L.begin(), L.end());
    PrintList(L);
}

// resize/swap/clear
void TestList5()
{
    // 用数组来构造list
    int array1[] = { 1, 2, 3 };
    list<int> l1(array1, array1 + sizeof(array1) / sizeof(array1[0]));
    PrintList(l1);

    // 交换l1和l2中的元素
    list<int> l2;
    l1.swap(l2);
    PrintList(l1);
    PrintList(l2);

    // 将l2中的元素清空
    l2.clear();
    cout << l2.size() << endl;
}

三、迭代器失效问题

前面说过,此处大家可将迭代器暂时理解成类似于指针,迭代器失效即迭代器所指向的节点的无效,即该节点被删除了。因为list的底层结构为带头结点的双向循环链表,因此在list中进行插入时是不会导致list的迭代器失效的,只有在删除时才会失效,并且失效的只是指向被删除节点的迭代器,其他迭代器不会受到影响

void TestListIterator1()
{
    int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
    list<int> l(array, array+sizeof(array)/sizeof(array[0]));
    auto it = l.begin();
    while (it != l.end())
    {
// erase()函数执行后,it所指向的节点已被删除,因此it无效,在下一次使用it时,必须先给
其赋值
        l.erase(it);
        ++it;
    }
}
// 改正
void TestListIterator()
{
    int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
    list<int> l(array, array+sizeof(array)/sizeof(array[0]));
    auto it = l.begin();
    while (it != l.end())
    {
        l.erase(it++); // it = l.erase(it);
    }
}

四、List模拟实现

#include <iostream>
using namespace std;
#include <assert.h>

namespace LYL
{
    // List的节点类
    template<class T>
    struct ListNode
    {
        ListNode(const T& val = T())
            : _prev(nullptr)
            , _next(nullptr)
            , _val(val)
        {}

        ListNode<T>* _prev;
        ListNode<T>* _next;
        T _val;
    };

    /*
    List 的迭代器
    迭代器有两种实现方式,具体应根据容器底层数据结构实现:
      1. 原生态指针,比如:vector
      2. 将原生态指针进行封装,因迭代器使用形式与指针完全相同,因此在自定义的类中必须实现以下方法:
         1. 指针可以解引用,迭代器的类中必须重载operator*()
         2. 指针可以通过->访问其所指空间成员,迭代器类中必须重载oprator->()
         3. 指针可以++向后移动,迭代器类中必须重载operator++()与operator++(int)
            至于operator--()/operator--(int)释放需要重载,根据具体的结构来抉择,双向链表可以向前             移动,所以需要重载,如果是forward_list就不需要重载--
         4. 迭代器需要进行是否相等的比较,因此还需要重载operator==()与operator!=()
    */
    template<class T, class Ref, class Ptr>
    class ListIterator
    {
        typedef ListNode<T> Node;
        typedef ListIterator<T, Ref, Ptr> Self;

        // Ref 和 Ptr 类型需要重定义下,实现反向迭代器时需要用到
    public:
        typedef Ref Ref;
        typedef Ptr Ptr;
    public:
        //
        // 构造
        ListIterator(Node* node = nullptr)
            : _node(node)
        {}

        //
        // 具有指针类似行为
        Ref operator*() 
        { 
            return _node->_val;
        }

        Ptr operator->() 
        { 
            return &(operator*()); 
        }

        //
        // 迭代器支持移动
        Self& operator++()
        {
            _node = _node->_next;
            return *this;
        }

        Self operator++(int)
        {
            Self temp(*this);
            _node = _node->_next;
            return temp;
        }

        Self& operator--()
        {
            _node = _node->_prev;
            return *this;
        }

        Self operator--(int)
        {
            Self temp(*this);
            _node = _node->_prev;
            return temp;
        }

        //
        // 迭代器支持比较
        bool operator!=(const Self& l)const
        { 
            return _node != l._node;
        }

        bool operator==(const Self& l)const
        { 
            return _node != l._node;
        }

        Node* _node;
    };

    template<class Iterator>
    class ReverseListIterator
    {
        // 注意:此处typename的作用是明确告诉编译器,Ref是Iterator类中的一个类型,而不是静态成员变量
        // 否则编译器编译时就不知道Ref是Iterator中的类型还是静态成员变量
        // 因为静态成员变量也是按照 类名::静态成员变量名 的方式访问的
    public:
        typedef typename Iterator::Ref Ref;
        typedef typename Iterator::Ptr Ptr;
        typedef ReverseListIterator<Iterator> Self;
    public:
        //
        // 构造
        ReverseListIterator(Iterator it)
            : _it(it)
        {}

        //
        // 具有指针类似行为
        Ref operator*()
        {
            Iterator temp(_it);
            --temp;
            return *temp;
        }

        Ptr operator->()
        {
            return &(operator*());
        }

        //
        // 迭代器支持移动
        Self& operator++()
        {
            --_it;
            return *this;
        }

        Self operator++(int)
        {
            Self temp(*this);
            --_it;
            return temp;
        }

        Self& operator--()
        {
            ++_it;
            return *this;
        }

        Self operator--(int)
        {
            Self temp(*this);
            ++_it;
            return temp;
        }

        //
        // 迭代器支持比较
        bool operator!=(const Self& l)const
        {
            return _it != l._it;
        }

        bool operator==(const Self& l)const
        {
            return _it != l._it;
        }

        Iterator _it;
    };

    template<class T>
    class list
    {
        typedef ListNode<T> Node;

    public:
        // 正向迭代器
        typedef ListIterator<T, T&, T*> iterator;
        typedef ListIterator<T, const T&, const T&> const_iterator;

        // 反向迭代器
        typedef ReverseListIterator<iterator> reverse_iterator;
        typedef ReverseListIterator<const_iterator> const_reverse_iterator;
    public:
        ///
        // List的构造
        list()
        {
            CreateHead();
        }

        list(int n, const T& value = T())
        {
            CreateHead();
            for (int i = 0; i < n; ++i)
                push_back(value);
        }

        template <class Iterator>
        list(Iterator first, Iterator last)
        {
            CreateHead();
            while (first != last)
            {
                push_back(*first);
                ++first;
            }
        }

        list(const list<T>& l)
        {
            CreateHead();

            // 用l中的元素构造临时的temp,然后与当前对象交换
            list<T> temp(l.begin(), l.end());
            this->swap(temp);
        }

        list<T>& operator=(list<T> l)
        {
            this->swap(l);
            return *this;
        }

        ~list()
        {
            clear();
            delete _head;
            _head = nullptr;
        }

        ///
        // List的迭代器
        iterator begin() 
        { 
            return iterator(_head->_next); 
        }

        iterator end() 
        { 
            return iterator(_head); 
        }

        const_iterator begin()const 
        { 
            return const_iterator(_head->_next); 
        }

        const_iterator end()const
        { 
            return const_iterator(_head); 
        }

        reverse_iterator rbegin()
        {
            return reverse_iterator(end());
        }

        reverse_iterator rend()
        {
            return reverse_iterator(begin());
        }

        const_reverse_iterator rbegin()const
        {
            return const_reverse_iterator(end());
        }

        const_reverse_iterator rend()const
        {
            return const_reverse_iterator(begin());
        }

        ///
        // List的容量相关
        size_t size()const
        {
            Node* cur = _head->_next;
            size_t count = 0;
            while (cur != _head)
            {
                count++;
                cur = cur->_next;
            }

            return count;
        }

        bool empty()const
        {
            return _head->_next == _head;
        }

        void resize(size_t newsize, const T& data = T())
        {
            size_t oldsize = size();
            if (newsize <= oldsize)
            {
                // 有效元素个数减少到newsize
                while (newsize < oldsize)
                {
                    pop_back();
                    oldsize--;
                }
            }
            else
            {
                while (oldsize < newsize)
                {
                    push_back(data);
                    oldsize++;
                }
            }
        }
        
        // List的元素访问操作
        // 注意:List不支持operator[]
        T& front()
        {
            return _head->_next->_val;
        }

        const T& front()const
        {
            return _head->_next->_val;
        }

        T& back()
        {
            return _head->_prev->_val;
        }

        const T& back()const
        {
            return _head->_prev->_val;
        }

        
        // List的插入和删除
        void push_back(const T& val) 
        { 
            insert(end(), val); 
        }

        void pop_back() 
        { 
            erase(--end()); 
        }

        void push_front(const T& val) 
        { 
            insert(begin(), val); 
        }

        void pop_front() 
        { 
            erase(begin()); 
        }

        // 在pos位置前插入值为val的节点
        iterator insert(iterator pos, const T& val)
        {
            Node* pNewNode = new Node(val);
            Node* pCur = pos._node;
            // 先将新节点插入
            pNewNode->_prev = pCur->_prev;
            pNewNode->_next = pCur;
            pNewNode->_prev->_next = pNewNode;
            pCur->_prev = pNewNode;
            return iterator(pNewNode);
        }

        // 删除pos位置的节点,返回该节点的下一个位置
        iterator erase(iterator pos)
        {
            // 找到待删除的节点
            Node* pDel = pos._node;
            Node* pRet = pDel->_next;

            // 将该节点从链表中拆下来并删除
            pDel->_prev->_next = pDel->_next;
            pDel->_next->_prev = pDel->_prev;
            delete pDel;

            return iterator(pRet);
        }

        void clear()
        {
            Node* cur = _head->_next;
            
            // 采用头删除删除
            while (cur != _head)
            {
                _head->_next = cur->_next;
                delete cur;
                cur = _head->_next;
            }

            _head->_next = _head->_prev = _head;
        }

        void swap(bite::list<T>& l)
        {
            std::swap(_head, l._head);
        }

    private:
        void CreateHead()
        {
            _head = new Node;
            _head->_prev = _head;
            _head->_next = _head;
        }
    private:
        Node* _head;
    };
}

五、List与vector的对比

       **                   vector**                  **   List**底 层 结 构动态顺序表,一段连续空间带头结点的双向循环链表随 机 访 问支持随机访问,访问某个元素效率O(1)不支持随机访问,访问某个元素

效率O(N)插 入 和 删 除任意位置插入和删除效率低,需要搬移元素,时间复杂
度为O(N),插入时有可能需要增容,增容:开辟新空
间,拷贝元素,释放旧空间,导致效率更低任意位置插入和删除效率高,不
需要搬移元素,时间复杂度为
O(1)空 间 利 用 率底层为连续空间,不容易造成内存碎片,空间利用率
高,缓存利用率高底层节点动态开辟,小节点容易
造成内存碎片,空间利用率低,
缓存利用率低迭 代 器原生态指针对原生态指针(节点指针)进行封装迭 代 器 失 效在插入元素时,要给所有的迭代器重新赋值,因为插入
元素有可能会导致重新扩容,致使原来迭代器失效,删
除时,当前迭代器需要重新赋值否则会失效插入元素不会导致迭代器失效,
删除元素时,只会导致当前迭代
器失效,其他迭代器不受影响使 用 场 景需要高效存储,支持随机访问,不关心插入删除效率大量插入和删除操作,不关心随
机访问

有关链表的相关OJ题

两个链表的第一个公共结点_牛客题霸_牛客网 (nowcoder.com)

  1. 环形链表 II - 力扣(LeetCode)

  2. 环形链表 - 力扣(LeetCode)

LCR 027. 回文链表 - 力扣(LeetCode)

面试题 02.04. 分割链表 - 力扣(LeetCode)

  1. 合并两个有序链表 - 力扣(LeetCode)

面试题 02.02. 返回倒数第 k 个节点 - 力扣(LeetCode)

  1. 链表的中间结点 - 力扣(LeetCode)

  2. 反转链表 - 力扣(LeetCode)

  3. 移除链表元素 - 力扣(LeetCode)

标签: list 数据结构 c++

本文转载自: https://blog.csdn.net/m0_69323023/article/details/134251976
版权归原作者 #欲速则不达# 所有, 如有侵权,请联系我们删除。

“List详解”的评论:

还没有评论