0


强化学习PPO代码讲解

阅读本文前对PPO的基本原理要有概念性的了解,本文基于我的上一篇文章:强化学习之PPO

当然,查看代码对于算法的理解直观重要,这使得你的知识不止停留在概念的层面,而是深入到应用层面。

代码采用了简单易懂的强化学习库PARL,对新手十分友好。

首先先来复述一下PARL的代码架构。强化学习可以看作智能体和环境交互学习的过程。而环境是独立于算法框架之外的内容。PARL把智能体分成了Agent,Algorthm,Model三个部分,这三个部分是层层嵌套的关系而不是相互独立的关系。Model负责定义神经网络模型,Algorithm负责利用Model的神经网络模型来定义算法。而Agent则负责利用算法来与环境进行交互和训练。

在这里插入图片描述

因此我们就分成三个部分来讲解PARL对PPO算法的实际应用。

如果想了解全貌,可以直接从主程序的main函数开始看。

神经网络模型

PPO是一个Actor-Critic算法,我们需要给它定义两个神经网络模型,一个给actor,一个给Critic:

import parl
import paddle
import paddle.nn as nn

classMujocoModel(parl.Model):def__init__(self, obs_dim, act_dim):super(MujocoModel, self).__init__()
        self.actor = Actor(obs_dim, act_dim)
        self.critic = Critic(obs_dim)defpolicy(self, obs):return self.actor(obs)defvalue(self, obs):return self.critic(obs)classActor(parl.Model):def__init__(self, obs_dim, act_dim):super(Actor, self).__init__()
        self.fc1 = nn.Linear(obs_dim,64)
        self.fc2 = nn.Linear(64,64)
        self.fc_mean = nn.Linear(64, act_dim)# 此处创建了一个Tensor来表示标准差的log,用来提高模型的探索能力,并且这些参数可以自动优化
        self.log_std = paddle.static.create_parameter([act_dim],
            dtype='float32',
            default_initializer=nn.initializer.Constant(value=0))defforward(self, obs):
        x = paddle.tanh(self.fc1(obs))
        x = paddle.tanh(self.fc2(x))
        mean = self.fc_mean(x)return mean, self.log_std

classCritic(parl.Model):def__init__(self, obs_dim):super(Critic, self).__init__()
        self.fc1 = nn.Linear(obs_dim,64)
        self.fc2 = nn.Linear(64,64)
        self.fc3 = nn.Linear(64,1)defforward(self, obs):
        x = paddle.tanh(self.fc1(obs))
        x = paddle.tanh(self.fc2(x))
        value = self.fc3(x)return value

可以看到,这个文件非常简单,定义了actor和critic两个网络的结构,然后用再用一个类来封装它们。

这两个网络都是较为简单的输入状态,经过线性层和激活函数后,输出动作和value。注意这里的价值网络指的是状态价值而不是动作价值,所以只输入了状态而没有输入动作。

PPO算法

PPO有两种,第一种是用KL散度来限制更新幅度,第二种是直接clip更新幅度,一般现在用第二种方法。

import parl
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.distributions import Normal
from parl.utils.utils import check_model_method

__all__ =['PPO']classPPO(parl.Algorithm):def__init__(self,
                 model,
                 clip_param,
                 value_loss_coef,
                 entropy_coef,
                 initial_lr,
                 eps=None,
                 max_grad_norm=None,
                 use_clipped_value_loss=True):# 检查两个网络
        check_model_method(model,'value', self.__class__.__name__)
        check_model_method(model,'policy', self.__class__.__name__)
        self.model = model

        self.clip_param = clip_param

        self.value_loss_coef = value_loss_coef
        self.entropy_coef = entropy_coef

        self.max_grad_norm = max_grad_norm
        self.use_clipped_value_loss = use_clipped_value_loss

        self.optimizer = optim.Adam(model.parameters(), lr=initial_lr, eps=eps)deflearn(self, obs_batch, actions_batch, value_preds_batch, return_batch,
              old_action_log_probs_batch, adv_targ):
        values = self.model.value(obs_batch)
        mean, log_std = self.model.policy(obs_batch)# 建立分布
        dist = Normal(mean, log_std.exp())# log_prob为计算定义的正态分布中对应的概率密度的对数,sum将其最后一个维度相加,并保持维度不变
        action_log_probs = dist.log_prob(actions_batch).sum(-1, keepdim=True)# 计算熵
        dist_entropy = dist.entropy().sum(-1).mean()# 这四行为PPO算法计算目标优化函数的公式,计算actor网络的loss
        ratio = torch.exp(action_log_probs - old_action_log_probs_batch)
        surr1 = ratio * adv_targ
        surr2 = torch.clamp(ratio,1.0- self.clip_param,1.0+ self.clip_param)* adv_targ
        action_loss =-torch.min(surr1, surr2).mean()# 计算critic网络的lossif self.use_clipped_value_loss:
            value_pred_clipped = value_preds_batch + \
                (values - value_preds_batch).clamp(-self.clip_param, self.clip_param)
            value_losses =(values - return_batch).pow(2)
            value_losses_clipped =(value_pred_clipped - return_batch).pow(2)
            value_loss =0.5* torch.max(value_losses,
                                         value_losses_clipped).mean()else:
            value_loss =0.5*(return_batch - values).pow(2).mean()

        self.optimizer.zero_grad()# 三个Loss一定比例相加,其中为了增加探索性,熵越大越好,因此为负(value_loss * self.value_loss_coef + action_loss -
         dist_entropy * self.entropy_coef).backward()
        nn.utils.clip_grad_norm_(self.model.parameters(), self.max_grad_norm)
        self.optimizer.step()return value_loss.item(), action_loss.item(), dist_entropy.item()# actor和critic的输出defsample(self, obs):
        value = self.model.value(obs)
        mean, log_std = self.model.policy(obs)# 通过均值和标准差建立高斯分布
        dist = Normal(mean, log_std.exp())# 对分布进行采样
        action = dist.sample()# log_prob为计算定义的正态分布中对应的概率密度的对数,sum将其最后一个维度相加,并保持维度不变
        action_log_probs = dist.log_prob(action).sum(-1, keepdim=True)return value, action, action_log_probs
    # 通过输入状态到actor来预测动作输出defpredict(self, obs):
        mean, _ = self.model.policy(obs)return mean
    # 通过输入状态到critic来计算defvalue(self, obs):return self.model.value(obs)

智能体

智能体初始化的参数中传入了algorithm,说明PPO算法是嵌套在智能体中的。

import parl
import paddle

classMujocoAgent(parl.Agent):def__init__(self, algorithm):super(MujocoAgent, self).__init__(algorithm)# 通过状态来预测动作输出defpredict(self, obs):
        obs = paddle.to_tensor(obs, dtype='float32')
        action = self.alg.predict(obs)return action.detach().numpy()# 给定状态,预测状态价值,动作,以及动作概率密度的对数的加和defsample(self, obs):
        obs = paddle.to_tensor(obs)
        value, action, action_log_probs = self.alg.sample(obs)return value.detach().numpy(), action.detach().numpy(), \
            action_log_probs.detach().numpy()# 重要!调用该函数即进行学习deflearn(self, next_value, gamma, gae_lambda, ppo_epoch, num_mini_batch,
              rollouts):""" Learn current batch of rollout for ppo_epoch epochs.
  
        Args:
            next_value (np.array): next predicted value for calculating advantage
            gamma (float): the discounting factor
            gae_lambda (float): lambda for calculating n step return
            ppo_epoch (int): number of epochs K
            num_mini_batch (int): number of mini-batches
            rollouts (RolloutStorage): the rollout storage that contains the current rollout
        """
        value_loss_epoch =0
        action_loss_epoch =0
        dist_entropy_epoch =0# PPO中每次学习迭代的次数ppo_epochfor e inrange(ppo_epoch):# 得到采样的数据
            data_generator = rollouts.sample_batch(next_value, gamma,
                                                   gae_lambda, num_mini_batch)for sample in data_generator:
                obs_batch, actions_batch, \
                    value_preds_batch, return_batch, old_action_log_probs_batch, \
                            adv_targ = sample

                obs_batch = paddle.to_tensor(obs_batch)
                actions_batch = paddle.to_tensor(actions_batch)
                value_preds_batch = paddle.to_tensor(value_preds_batch)
                return_batch = paddle.to_tensor(return_batch)
                old_action_log_probs_batch = paddle.to_tensor(
                    old_action_log_probs_batch)
                adv_targ = paddle.to_tensor(adv_targ)# 使用PPO计算Loss,并自己调整网络参数
                value_loss, action_loss, dist_entropy = self.alg.learn(
                    obs_batch, actions_batch, value_preds_batch, return_batch,
                    old_action_log_probs_batch, adv_targ)

                value_loss_epoch += value_loss
                action_loss_epoch += action_loss
                dist_entropy_epoch += dist_entropy

        num_updates = ppo_epoch * num_mini_batch

        value_loss_epoch /= num_updates
        action_loss_epoch /= num_updates
        dist_entropy_epoch /= num_updates

        return value_loss_epoch, action_loss_epoch, dist_entropy_epoch
    
    # 给定状态,评估状态价值defvalue(self, obs):
        obs = paddle.to_tensor(obs)
        val = self.alg.value(obs)return val.detach().numpy()

storage

储存信息的类

import numpy as np
from paddle.io import BatchSampler, RandomSampler

classRolloutStorage(object):def__init__(self, num_steps, obs_dim, act_dim):
        self.num_steps = num_steps
        self.obs_dim = obs_dim
        self.act_dim = act_dim

        self.obs = np.zeros((num_steps +1, obs_dim), dtype='float32')
        self.actions = np.zeros((num_steps, act_dim), dtype='float32')
        self.value_preds = np.zeros((num_steps +1,), dtype='float32')
        self.returns = np.zeros((num_steps +1,), dtype='float32')
        self.action_log_probs = np.zeros((num_steps,), dtype='float32')
        self.rewards = np.zeros((num_steps,), dtype='float32')

        self.masks = np.ones((num_steps +1,), dtype='bool')
        self.bad_masks = np.ones((num_steps +1,), dtype='bool')

        self.step =0defappend(self, obs, actions, action_log_probs, value_preds, rewards,
               masks, bad_masks):
        self.obs[self.step +1]= obs
        self.actions[self.step]= actions
        self.rewards[self.step]= rewards
        self.action_log_probs[self.step]= action_log_probs
        self.value_preds[self.step]= value_preds
        self.masks[self.step +1]= masks
        self.bad_masks[self.step +1]= bad_masks

        self.step =(self.step +1)% self.num_steps

    defsample_batch(self,
                     next_value,
                     gamma,
                     gae_lambda,
                     num_mini_batch,
                     mini_batch_size=None):# calculate return and advantage first
        self.compute_returns(next_value, gamma, gae_lambda)
        advantages = self.returns[:-1]- self.value_preds[:-1]
        advantages =(advantages - advantages.mean())/(
            advantages.std()+1e-5)# generate sample batch
        mini_batch_size = self.num_steps // num_mini_batch
        sampler = BatchSampler(
            sampler=RandomSampler(range(self.num_steps)),
            batch_size=mini_batch_size,
            drop_last=True)for indices in sampler:
            obs_batch = self.obs[:-1][indices]
            actions_batch = self.actions[indices]
            value_preds_batch = self.value_preds[:-1][indices]
            returns_batch = self.returns[:-1][indices]
            old_action_log_probs_batch = self.action_log_probs[indices]

            value_preds_batch = value_preds_batch.reshape(-1,1)
            returns_batch = returns_batch.reshape(-1,1)
            old_action_log_probs_batch = old_action_log_probs_batch.reshape(-1,1)

            adv_targ = advantages[indices]
            adv_targ = adv_targ.reshape(-1,1)yield obs_batch, actions_batch, value_preds_batch, returns_batch, old_action_log_probs_batch, adv_targ

    defafter_update(self):
        self.obs[0]= np.copy(self.obs[-1])
        self.masks[0]= np.copy(self.masks[-1])
        self.bad_masks[0]= np.copy(self.bad_masks[-1])defcompute_returns(self, next_value, gamma, gae_lambda):
        self.value_preds[-1]= next_value
        gae =0for step inreversed(range(self.rewards.size)):
            delta = self.rewards[step]+ gamma * self.value_preds[
                step +1]* self.masks[step +1]- self.value_preds[step]
            gae = delta + gamma * gae_lambda * self.masks[step +1]* gae
            gae = gae * self.bad_masks[step +1]
            self.returns[step]= gae + self.value_preds[step]

主程序

from collections import deque
import numpy as np
import paddle
import gym
from mujoco_model import MujocoModel
from mujoco_agent import MujocoAgent
from storage import RolloutStorage
from parl.algorithms import PPO
from parl.env.mujoco_wrappers import wrap_rms, get_ob_rms
from parl.utils import summary
import argparse

LR =3e-4
GAMMA =0.99
EPS =1e-5# Adam optimizer epsilon (default: 1e-5)
GAE_LAMBDA =0.95# Lambda parameter for calculating N-step advantage
ENTROPY_COEF =0.# Entropy coefficient (ie. c_2 in the paper)
VALUE_LOSS_COEF =0.5# Value loss coefficient (ie. c_1 in the paper)
MAX_GRAD_NROM =0.5# Max gradient norm for gradient clipping
NUM_STEPS =2048# data collecting time steps (ie. T in the paper)
PPO_EPOCH =10# number of epochs for updating using each T data (ie K in the paper)
CLIP_PARAM =0.2# epsilon in clipping loss (ie. clip(r_t, 1 - epsilon, 1 + epsilon))
BATCH_SIZE =32# Logging Params
LOG_INTERVAL =1# 用于评估策略defevaluate(agent, ob_rms):
    eval_env = gym.make(args.env)
    eval_env.seed(args.seed +1)
    eval_env = wrap_rms(eval_env, GAMMA, test=True, ob_rms=ob_rms)
    eval_episode_rewards =[]
    obs = eval_env.reset()whilelen(eval_episode_rewards)<10:
        action = agent.predict(obs)# Observe reward and next obs
        obs, _, done, info = eval_env.step(action)# get validation rewards from info['episode']['r']if done:
            eval_episode_rewards.append(info['episode']['r'])

    eval_env.close()print(" Evaluation using {} episodes: mean reward {:.5f}\n".format(len(eval_episode_rewards), np.mean(eval_episode_rewards)))return np.mean(eval_episode_rewards)defmain():
    paddle.seed(args.seed)# 创建环境
    env = gym.make(args.env)
    env.seed(args.seed)
    env = wrap_rms(env, GAMMA)# 创建模型
    model = MujocoModel(env.observation_space.shape[0],
                        env.action_space.shape[0])# 根据模型创建PPO算法
    algorithm = PPO(model, CLIP_PARAM, VALUE_LOSS_COEF, ENTROPY_COEF, LR, EPS,
                    MAX_GRAD_NROM)# 根据PPO算法创建智能体
    agent = MujocoAgent(algorithm)# 实例化一个数据存储的类
    rollouts = RolloutStorage(NUM_STEPS, env.observation_space.shape[0],
                              env.action_space.shape[0])# 重置环境,获取第一个状态,并存入rollouts
    obs = env.reset()
    rollouts.obs[0]= np.copy(obs)# 创建队列
    episode_rewards = deque(maxlen=10)

    num_updates =int(args.train_total_steps)// NUM_STEPS
    # 开始训练,训练总步数为args.train_total_stepsfor j inrange(num_updates):for step inrange(NUM_STEPS):# 得到当前的状态,由两个神经网络得到状态价值,动作,以及概率密度函数的加和
            value, action, action_log_prob = agent.sample(rollouts.obs[step])# 把动作输入环境中,得到下一个状态,奖励,是否游戏结束,以及信息
            obs, reward, done, info = env.step(action)# 把奖励信息添加到列表中if done:
                episode_rewards.append(info['episode']['r'])# 其他信息
            masks = paddle.to_tensor([[0.0]]if done else[[1.0]], dtype='float32')
            bad_masks = paddle.to_tensor([[0.0]]if'bad_transition'in info.keys()else[[1.0]],
                dtype='float32')# 给rollouts添加信息
            rollouts.append(obs, action, action_log_prob, value, reward, masks,
                            bad_masks)# 输入下一个状态,得到下一个状态对应的状态价值
        next_value = agent.value(rollouts.obs[-1])# 关键一行,计算Loss,并进行一次学习,一次学习中包含若干个PPO epoch
        value_loss, action_loss, dist_entropy = agent.learn(
            next_value, GAMMA, GAE_LAMBDA, PPO_EPOCH, BATCH_SIZE, rollouts)

        rollouts.after_update()# 打印信息if j % LOG_INTERVAL ==0andlen(episode_rewards)>1:
            total_num_steps =(j +1)* NUM_STEPS
            print("Updates {}, num timesteps {},\n Last {} training episodes: mean/median reward {:.1f}/{:.1f}, min/max reward {:.1f}/{:.1f}\n".format(j, total_num_steps,len(episode_rewards),
                        np.mean(episode_rewards), np.median(episode_rewards),
                        np.min(episode_rewards), np.max(episode_rewards),
                        dist_entropy, value_loss, action_loss))# 评估智能体if(args.test_every_steps isnotNoneandlen(episode_rewards)>1and j % args.test_every_steps ==0):
            ob_rms = get_ob_rms(env)
            eval_mean_reward = evaluate(agent, ob_rms)

            summary.add_scalar('ppo/mean_validation_rewards', eval_mean_reward,(j +1)* NUM_STEPS)if __name__ =="__main__":
    parser = argparse.ArgumentParser(description='RL')
    parser.add_argument('--seed',type=int, default=616,help='random seed (default: 616)')
    parser.add_argument('--test_every_steps',type=int,
        default=10,help='eval interval (default: 10)')
    parser.add_argument('--train_total_steps',type=int,
        default=10e5,help='number of total time steps to train (default: 10e5)')
    parser.add_argument('--env',
        default='Hopper-v3',help='environment to train on (default: Hopper-v3)')
    args = parser.parse_args()

    main()

注意事项

  1. 在运行程序之前要安装好mujoco,有坑。
  2. 可以看到PPO算法采用了三个Loss,目的如下:首先actor的Loss是为了让优势函数A越高越好 ,Critic的Loss是让其输出与目标输出越接近越好,而actor输出分布的熵让它在达成目的的同时越大越好,有利于系统的稳定性。

本文转载自: https://blog.csdn.net/tianjuewudi/article/details/124766680
版权归原作者 微笑小星 所有, 如有侵权,请联系我们删除。

“强化学习PPO代码讲解”的评论:

还没有评论