逻辑回归原理梳理_以python为工具 【Python机器学习系列(九)】
文章目录
大家好,我是侯小啾!
今天分享的内容是,逻辑回归的原理,及过程中的公式推导。并使用python实现梯度下降法的逻辑回归。
ʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞ
1.传统线性回归
逻辑回归是一种常用的回归模型,是广义的线性回归的一种特例。做线性回归时,我们采用预测函数的一般形式为:
h
(
X
)
=
ω
T
X
+
b
=
θ
T
X
h(X)=\omega^TX+b=\theta^TX
h(X)=ωTX+b=θTX
(其中
b
b
b可以和
ω
\omega
ω和并写为
θ
\theta
θ,这样即相当于给矩阵X一个全为1的列。)
2.引入sigmoid函数并复合
在使用逻辑回归做分类问题时,单纯的这个式子已经不能满足我们的需求。以二分类为例,样本数据中对事件是否发生的描述,只有0和1。为建立描述目标事件发生概率与样本特征之间的关系,因为事件发生的概率分布在[0,1]区间内,所以这里可以与
sigmoid
函数组成复合函数:
g
(
z
)
=
1
1
+
e
−
z
g(z)=\frac{1}{1+e^{-z}}
g(z)=1+e−z1
sigmoid
函数的定义域为全体实数,而值域为(0,1),函数曲线如图所示:
将h(x)嵌套进g(z)得到新的H(x)表达式为:
H
(
X
)
=
g
(
h
(
X
)
)
=
p
=
1
1
+
e
−
(
ω
T
X
+
b
)
H(X)=g(h(X))=p=\frac{1}{1+e^{-(\omega^T X+b)}}
H(X)=g(h(X))=p=1+e−(ωTX+b)1
这里的H(X)表示事件发生概率的的预测值 p。(即结果为1的概率,值越大表示结果越可能为1,越小表示结果越可能为0)
此式,也等价于将对数几率
ln
p
1
−
p
\ln\frac{p}{1-p}
ln1−pp 对 X 做回归:
ln
p
1
−
p
=
ω
T
X
+
b
\ln\frac{p}{1-p}=\omega^T X+b
ln1−pp=ωTX+b
(这里只做普及,下边进一步的过程还使用H(x)而不用对数几率。因为以样本结果的1和0作为真实的p值,取值只有0和1,而当p=1时的对数几率为无穷,所以不适用。)
3. 代价函数
在传统的线性回归中,我们只需找到能使均方误差最小的
ω
\omega
ω和
b
b
b值即可,这个表示均方误差的表达式即“代价函数”。在这里的逻辑回归中,我们同样需要选择合适的代价函数:
c
o
s
t
(
H
(
X
)
,
y
i
)
=
−
1
m
∑
i
=
1
m
[
−
y
i
(
ln
(
H
(
X
)
)
−
(
1
−
y
)
ln
(
1
−
H
(
X
)
)
)
]
cost(H(X),y_i)=-\frac{1}{m}\sum_{i=1}^m[-y_i(\ln(H(X))-(1-y)\ln(1-H(X)))]
cost(H(X),yi)=−m1∑i=1m[−yi(ln(H(X))−(1−y)ln(1−H(X)))]
其中,m表示样本总数为m。如何理解这个式子呢:
因为H(X)是在(0,1)范围内的,所以
ln
(
H
(
X
)
)
\ln(H(X))
ln(H(X))是负数,在前边再加负号即为正值,取值范围为大于0的全体实数。
−
y
i
(
ln
(
H
(
X
)
)
-y_i(\ln(H(X))
−yi(ln(H(X)) 和
−
(
1
−
y
)
ln
(
1
−
H
(
X
)
)
)
-(1-y)\ln(1-H(X)))
−(1−y)ln(1−H(X)))两个式子总是有一个为0。
当
y
i
y_i
yi为1时,
−
y
i
(
ln
(
H
(
X
)
)
-y_i(\ln(H(X))
−yi(ln(H(X))不为0,该式子越大,则表示预测错误的越严重,越小则表示预测的越准确;同理,
−
(
1
−
y
)
ln
(
1
−
H
(
X
)
)
)
-(1-y)\ln(1-H(X)))
−(1−y)ln(1−H(X)))式子则表示
y
i
=
0
y_i=0
yi=0的时候,预测的的准确性(也是越大越不准确)。所以我们需要找到能使得
c
o
s
t
(
H
(
X
)
,
y
i
)
cost(H(X),y_i)
cost(H(X),yi)最小 的
ω
\omega
ω和
b
b
b值。
这个式子还可以进一步化简,具体这里不再展示。
4.似然函数也可以
也可以使用似然函数代替代价函数:
L
(
ω
)
=
∏
i
=
1
m
p
y
i
(
1
−
p
)
1
−
y
i
L(\omega)=\prod_{i=1}^m p^{y_i}(1-p)^{1-y_i}
L(ω)=∏i=1mpyi(1−p)1−yi
此表达式的含义是,每个样本预测正确的概率的乘积。
其中p即H(X)预测的结果。
y
i
y_i
yi的取值可以是1和0,所以当
y
i
y_i
yi为1时
(
1
−
p
)
1
−
y
i
(1-p)^{1-y_i}
(1−p)1−yi为1,而
y
i
y_i
yi为0时
p
y
i
p^{{y_i}}
pyi为1。
而我们的目的是,尽可能地使得这个乘积最大。
对该表达式两边同时去对数,得:
l
(
ω
)
=
∑
i
=
1
m
(
y
i
ln
p
+
(
1
−
y
i
)
ln
(
1
−
p
)
)
l(\omega)=\sum_{i=1}^{m}(y_i \ln p + (1-y_i)\ln (1-p))
l(ω)=∑i=1m(yilnp+(1−yi)ln(1−p))
=
∑
i
=
1
m
(
y
i
ω
T
x
i
−
ln
(
1
+
e
ω
T
x
i
)
)
=\sum_{i=1}^{m}(y_i\omega^Tx_i-\ln (1+e^{\omega^Tx_i}))
=∑i=1m(yiωTxi−ln(1+eωTxi))
5. python梯度下降实现逻辑回归
得到或part3和part4得到的表达式后,可以使用梯度下降或牛顿法的方法进一步对参数
ω
\omega
ω 和
b
b
b 进行求解了。
以梯度下降法为例,首先自行准备一组数据,形如:
其中第一列,第二列为两列特征,第三列为标签值。
梯度下降法实现逻辑回归的python代码如下,:
import numpy as np
import matplotlib.pyplot as plt
# 读取数据
data = np.genfromtxt("data.csv", delimiter=",")# 特征:选择前两列
x_data = data[:,:-1]# 标签:y
y_data = data[:,-1]# 给X添加一列全为1的数据,即 将b和Ω合并写为θ。
X_data = np.concatenate((np.ones((len(x_data),1)), x_data), axis=1)# 定义sigmoid函数defsigmoid_(x):return1/(1+ np.exp(-x))# 定义损失函数 # xMat:x_data矩阵 yMat:y_data矩阵 ws:参数向量的转置defcost_(xMat, yMat, ws):# 左式,即y实际为1时
left = np.multiply(yMat, np.log(sigmoid_(xMat * ws)))# 右式,即y实际为0时
right = np.multiply(1- yMat, np.log(1- sigmoid_(xMat * ws)))return np.sum(left + right)/-(len(xMat))# 定义梯度下降求解θdefgradAscent(xArr, yArr):# 将ndarry类型转为矩阵类型
xMat = np.mat(xArr)
yMat = np.mat(yArr)# 初始化学习率
lr =0.001# 初始化迭代次数
epochs =10000# 取出 样本个数m 以及 特征个数n
m, n = np.shape(xMat)# 初始化的θ --> θ^T*xMat θ0*x0+θ1*x1+θ2*x2
ws = np.mat(np.ones((n,1)))# 初始化损失列表
costList =[]# 迭代for i inrange(epochs +1):# 求导# 1.h(x) 100*3 3*1 --> 100*1 -->每个样本都有一个h(x)
h = sigmoid_(xMat * ws)# print(f"xMat shape:{np.shape(xMat)}")# print(f"ws shape:{np.shape(ws)}")# 矩阵乘法:n*m m*1 --> n*1 --># xMat:m*n 3*100 m*1 1*100# h-->预测值 (m*1)# yMat-->真实值 (m*1)
ws_grad = xMat.T *(h - yMat.T)/ m
# print(f"xmat.T shape{np.shape(xMat.T)}")# print(f"yMat shape{np.shape(h - yMat.T)}")# print(np.shape(ws_grad))# 更新ws-->theta向量
ws = ws - lr * ws_grad
if i %50==0:
costList.append(cost_(xMat, yMat, ws))# 返回theta向量ws,以及损失列表return ws, costList
# 训练模型
ws, costList = gradAscent(X_data, y_data)print(ws)# 初始化测试集的数据
x_test =[[-4],[3]]# 计算分类函数
y_test =-(x_test*ws[1]+ws[0])/ws[2]# 绘制loss曲线# 生成0,10000
x = np.linspace(0,10000,201)
plt.plot(x,costList)
plt.xlabel("epochs")
plt.ylabel("Cost")
plt.show()
损失曲线如图所示:
可见当迭代次数在2000左右时,函数的损失已经区域稳定,所以10000次迭代是绝对可靠的。
最终返回
θ
\theta
θ向量的列表如图所示,即我们要求的参数:
所以
ω
1
\omega1
ω1值为2.05836354,
ω
2
\omega2
ω2值为0.3510579,
b
b
b值为-0.36341304。
6.python梯度下降实现非线性逻辑回归
python梯度下降实现非线性逻辑回归代码示例如下:
import numpy as np
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.metrics import classification_report
from sklearn.preprocessing import PolynomialFeatures
# 读取数据
data = np.genfromtxt("data2.txt", delimiter=",")
x_data = data[:,:-1]
y_data = data[:,-1, np.newaxis]
df = pd.DataFrame(data, columns=["x1","x2","y"])
sns.scatterplot(x="x1", y="x2", data=df, hue="y")
plt.show()
首先准备一组数据,其中有两个特征,一组标签,标签分为0和1两类。绘制出数据分布散点图如下图所示:
其中,蓝色点表示0类,黄色点表示1类。
则这里的回归过程需要涉及多项式。
接下来定义损失函数和梯度下降求解的函数。代码入下所示:
defcost_(xMat, yMat, ws):# 进行相乘
left = np.multiply(yMat, np.log(sigmoid_(xMat * ws)))
right = np.multiply(1- yMat, np.log(1- sigmoid_(xMat * ws)))return np.sum(left + right)/-(len(xMat))# 定义梯度下降求解θdefgradAscent(xArr, yArr):# 将ndarry类型转为矩阵
xMat = np.mat(xArr)
yMat = np.mat(yArr)# 初始化学习率
lr =0.001# 初始化迭代次数
epochs =10000
m, n = np.shape(xMat)
ws = np.mat(np.ones((n,1)))
costList =[]# 迭代for i inrange(epochs +1):
h = sigmoid_(xMat * ws)
ws_grad = xMat.T *(h - yMat)/ m
# 更新ws-->theta向量
ws = ws - lr * ws_grad
if i %50==0:
costList.append(cost_(xMat, yMat, ws))# 返回theta向量ws,以及损失列表return ws, costList
将最高次项设定为3次项,并将原数据转换为多项式数据,然后梯度下降求解:
poly_reg = PolynomialFeatures(degree=3)
x_poly = poly_reg.fit_transform(x_data)
ws, costList = gradAscent(x_poly, y_data)# 输出求解结果(假设两个特征的名字分别为x1,x2)
point = poly_reg.get_feature_names_out(['x1','x2'])print(point)print(ws)
则求解情况如下图所示:
这里不再额外准备数据了,还使用原训练样本数据,来进行预测,目的在于体现代码及逻辑:
# 定义预测函数defpredict_(x_data, ws):# 首先将ndarray转换为matrix
xMat = np.mat(x_data)# 将theta转变为矩阵
ws = np.mat(ws)# 以0.5为阈值,h(x)>5则1,否则为0return[1if x >=0.5else0for x in sigmoid_(xMat*ws)]# 预测
pred = predict_(x_poly, ws)print(pred)# 输出报告print(classification_report(y_data, pred))
预测结果与评估报告输出如下:
本次分享就到这里,小啾感谢您的关注与支持!
🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ
本专栏更多好文欢迎点击下方连接:
1.初识机器学习前导内容_你需要知道的基本概念罗列_以PY为工具 【Python机器学习系列(一)】
2.sklearn库数据标准预处理合集_【Python机器学习系列(二)】
3.K_近邻算法_分类Ionosphere电离层数据【python机器学习系列(三)】
4.python机器学习 一元线性回归 梯度下降法的实现 【Python机器学习系列(四)】
5.sklearn实现一元线性回归 【Python机器学习系列(五)】
6.多元线性回归_梯度下降法实现【Python机器学习系列(六)】
7.sklearn实现多元线性回归 【Python机器学习系列(七)】
8.sklearn实现多项式线性回归_一元/多元 【Python机器学习系列(八)】
版权归原作者 侯小啾 所有, 如有侵权,请联系我们删除。