0


C++ [STL之list模拟实现]

list模拟实现

本文已收录至《C++语言》专栏!
作者:ARMCSKGT

CSDN


STL之list模拟实现


前言

list的底层与vector和string不同,实现也有所差别,特别是在迭代器的设计上,本节将为大家介绍list简单实现,并揭开list迭代器的底层!
list-出自STL源码剖析


正文

本文介绍list部分简单接口,以list迭代器的介绍为主!

基本框架


list底层是一个带头双向循环链表,在节点上变化不大,主要是操作!

list整体由三个类组成:

  • 节点类(封装一个节点)
  • 迭代器类
  • list类

节点类

list节点类是一个模板类以适合于任何类型的list对象,封装了一个节点需要的基本成员:

  • 成员变量 – 前驱指针 _prev – 后继指针 _next – 数据存储 _data
  • 成员函数:只有一个构造函数,用于初始化节点data数据和置空指针,构造函数的value参数是缺省参数,适应不同场景注意:节点类不需要拷贝构造和析构函数,对于节点的拷贝构造在list中只需要浅拷贝即可,节点的释放也不在节点类中进行!
//节点类template<classT>structlist_node{
    list_node<T>* _prev,* _next;
    T _data;list_node(const T& value =T()):_prev(nullptr)//指针置空,_next(nullptr),_data(value)//初始化data{}};

迭代器类

迭代器类也是封装节点,但是迭代器类不会创造节点,只会利用现有节点构造一个迭代器,在迭代器内部通过各种运算符重载对节点的状态做修改!

其次,我们在使用迭代器时,会涉及返回节点指针或数据data的引用,所以需要在构造对象时将list数据类型的指针和引用类型传给迭代器对象!

迭代器在不访问data的情况下返回的都是迭代器,为了书写简洁,我们事先声明本迭代器类型self(即实例的类型),在函数操作完成时返回self(迭代器)即可!

template<classT,classRef,classPtr>struct__list_iterator{typedef list_node<T> node;//节点指针typedef __list_iterator<T, Ref, Ptr> self;//迭代器对象(方便返回迭代器)

    node* _node;//节点__list_iterator(node* n)//默认构造函数:_node(n){}};

注意,迭代器对象不会凭空创造节点,只会利用现有的节点(迭代器节点类型与list节点类型相同),所以不需要拷贝构造和析构函数,浅拷贝足以!


list类

list类中包含一个头节点和迭代器以及各种操作函数!

template<classT>classlist{typedef list_node<T> node;//node节点类型public:typedef T& reference;//T&引用类型typedefconst T& const_reference;//const T&引用类型private:
    node* _head;//头节点};

这里有些类型为了见名知意,进行了 typedef !


迭代器类功能实现


在介绍list之前,我们先介绍list迭代器部分!

list迭代器

list迭代器是一个单独的struct类,使用struct是为了公开成员供用户使用!
虽然list不支持下标随机访问,但是我们希望list仍然像vector一样使用++和 - - 访问每一个节点,对于list对象,我们是无法实现的,因为对list定义的对象重载运算符++和 - - 操作会丢失节点,因为list要保存完整的节点信息,所以只能把这个功能外包给迭代器类!
为什么使用迭代器
list的是双向链表,就可以往后走也可以往前走,所以list迭代器是双向迭代器,但是list迭代器不支持随机访问,也就是只支持begin++和begin - -,不支持加整数(begin+3等)随机访问 (不支持随机访问) ,毕竟不是连续的空间!

迭代器分类:

  • 单向迭代器:只支持 ++ 或 - - 一个方向上的遍历(即正向或反向)
  • 双向迭代器:支持++和 - - 前后遍历
  • 随机迭代器:支持通过加上一个整数的方式跳跃式随机访问(例如begin+3,只有随机迭代器才能使用库函数sort)

迭代器设计思想

我们规定list迭代器begin指向头节点所指向的下一个节点(链表中的第一个有效节点),end指向头节点,返回的都是迭代器对象,遍历时从第一个节点开始遍历一直到头节点结束!
迭代器设计
首先,我们的迭代器需要list实例化的数据类型,list精华在于迭代器类的设计,而迭代器类中的精华在于多参数模板,这种传多模板参数的方法,巧妙的解决了 普通对象const对象 的冗余设计问题!

迭代器分为 iteratorconst_iterator,不同的对象调用不同的迭代器类型,如果不用多参数模板,就需要写两份相差不大的迭代器类,造成代码冗余!

多参数模板:

  • T:节点值数据类型
  • Ref:节点值数据类型引用类型
  • Ptr:节点值数据类型指针类型

普通迭代器和const迭代器
使用不同的参数组合可以实例化出不同的迭代器,这正是 泛型编程 思想之一!

因为返回类型都为迭代器对象,所以可以使用匿名对象进行构造!

list迭代器定义:

template<classT>classlist{typedef list_node<T> node;public:typedef __list_iterator<T, T&, T*> iterator;typedef __list_iterator<T,const T&,const T*> const_iterator;//普通迭代器
    iterator begin(){returniterator(_head->_next);} 
    iterator end(){returniterator(_head);}//普通迭代器const重载版本    
    const_iterator begin()const{returnconst_iterator(_head->_next);}
    const_iterator end()const{returnconst_iterator(_head);}//const迭代器
    const_iterator cbegin()const{returnconst_iterator(_head->_next);} 
    const_iterator cend()const{returnconst_iterator(_head);}private:
    node* _head;};

在某些场景下,使用const引用list对象传参,在内部定义迭代器或使用范围for,编译器默认范围for使用begin和end迭代器,而我们加上const而编译器无法匹配迭代器,所以普通迭代器我们提供const版本去适应不同场景!

// 例如该场景,如果没用const普通迭代器则报错voidPrint(const list<int>& ls){for(constauto& x : ls)//内部范围for调用的是const普通迭代器begin和end
        cout << x <<" ";

    cout << endl;}

在后续涉及list对象打印所有节点参数的时候会调用此函数!


迭代器操作设计

迭代器遍历:
对于迭代器的遍历,无非是前置++和 - - 以及后置++和 - - !
对于vector,是一片连续的空间,++相当于走到下一个元素,- - 相当于回到上一个元素!
但是list是一个一个的节点,并非连续的空间,对于list迭代器的++和 - - 只能手动走向下一个节点,即_node = _node->_next !
list与vector的迭代器
注意: 我们直接对list迭代器中的_node进行++和 - - ,因为不是连续空间,直接进行++和 - - 会造成野指针问题;而且我们迭代器在切换节点后需要返回一个迭代器,所以返回self类型(当前迭代器类型)即可!

//返回__list_iterator对象引用
self&operator++()//前置++{
    _node = _node->_next;return*this;}//返回__list_iterator对象
self operator++(int)//后置++{
    self tmp(*this);
    _node = _node->_next;return tmp;}

self&operator--()//前置--{
    _node = _node->_prev;return*this;}

self operator--(int)//后置--{
    self tmp(*this);
    _node = _node->_prev;return tmp;}

对于前置操作: 我们只需要将当前迭代器节点走到下一个节点即可,然后返回迭代器!
对于后置操作: 我们需要先构造一个临时对象保存当前的节点,然后让迭代器走到下一个节点上,返回临时对象的节点即可完成后置操作!

注意: 虽然我们可以通过某些手段实现随机访问,但是效率极低,为了跟库保持一致不进行实现!

其他操作:
对于迭代器,如果我们list实例化的是指针,则需要

*

运算符解引用取值,以及因为我们嵌套了一层迭代器,在使用

->

运算符时需要返回data的地址!

因为我们在使用迭代器遍历时需要有遍历条件作为终止条件,不妨会涉及迭代器的比较,所以还需要 != 和 == 的比较操作!

//迭代器比较booloperator!=(const self& n)const{return _node != n._node;}booloperator==(const self& n)const{return _node == n._node;}//返回T&——解引用访问数据
Ref operator*(){return _node->_data;}//返回T*——自定义类型需要->访问成员(其_data可能是一个自定义类型)
Ptr operator->(){return&_node->_data;}
voidtest(){int arr[]={1,2,3,4,5,6,7,8,9,10};
    my_list::list<int>ls(arr, arr +10);//迭代器区间构造auto it = ls.begin();while(it != ls.end()){
        cout <<*it <<" ";++it;}
    cout << endl;//当然,支持迭代器就支持范围forfor(constauto& x : ls){
        cout << x <<" ";}
    cout << endl;}

演示
迭代器中每时每刻只有一个节点指针,当我们进行遍历操作时内部改变即可,外部迭代器还是同一个迭代器对象!


list类功能实现


默认成员函数

对于list默认采成员函数无非就是我们常见的四种类默认采用函数:

  • 构造函数(默认构造和迭代器区间构造)
  • 拷贝构造函数
  • 赋值重载函数
  • 析构函数

构造函数
因为我们是带头的链表,所以在实例化时必须事先申请一个头节点,所以所有的构造函数都会在操作前申请一个头节点,为了避免代码的冗余,我们将头节点的创建封装为一个private函数,在构造函数初始化时调用创建头节点!

private:
    node* _head;voidEmpty_Init()//申请一个头节点初始化链表{
        _head =new node;
        _head->_next = _head->_prev = _head;
        _head->_data =T();}

默认构造函数需要支持构造一个空链表,也可以构造有n个value值节点的链表!
当我们需要构造空链表时,直接调用 Empty_Init 函数即可!

list(){Empty_Init();}//默认构造list(int n, const_reference value =T())//构造有n个value值节点的链表!{Empty_Init();while(n--){push_back(value);}}

但我们发现,构造有n个T类型值的链表的构造函数可以包含默认构造的功能,只需要一个缺省参数0即可;如果需要插入数据,调用push_back即可(库中没有这样实现,需要给定n指定的节点数)!

list(int n =0, const_reference value =T()){Empty_Init();while(n--){push_back(value);}}list(size_t n =0, const_reference value =T());//避免因为list(size_t,size_t)匹配上迭代器区间构造//实现与以上函数一样,但因为迭代器区间构造冲突问题不进行实现

这里的

const_reference

相当于

const T&

!

迭代器区间构造也是调用push_back进行尾插!

template<classInputIterator>//迭代器区间构造list(InputIterator first, InputIterator last){Empty_Init();while(first != last){push_back(*first);++first;}}

实例演示:

voidtest(){
    list<int> l1;//构造空的list对象
    list<int>l2(3,1);//构造有3个节点为1的list对象int arr[]={1,2,3,4,5,6,7,8,9,10};
    list<int>l3(arr, arr +10);//迭代器区间构造
    cout <<"l1:";Print(l1);
    cout <<"l2:";Print(l2);
    cout <<"l3:";Print(l3);}

实例演示
Print函数是打印list对象节点的函数,在上面迭代器部分介绍过!

拷贝构造
拷贝构造需要注意深拷贝问题,当然对于自定义类型会调用其自带的拷贝构造,,其次就是对象参数需要引用,否则会引起无穷递归问题!

拷贝构造采用现代写法,构造临时对象使用swap交换,在此之前,因为是构造函数所以需要创造头节点,调用 Empty_Init() 函数,再进行拷贝!

list(const list<T>& l)//拷贝构造{Empty_Init();
    list<T>tmp(l.begin(), l.end());swap(tmp);}

实例演示:

voidtest(){
    list<int>l1(3,1);//构造有3个节点为1的list对象
    list<int>l2(l1);Print(l2);}

实例演示

赋值重载
对于赋值重载,与拷贝构造相似,但是赋值重载在传递参数时使用传值传参,这样就自动帮我们构造了一个临时对象,我们只需要swap取下临时对象的头节点即可,将我们现有的链表交给临时对象销毁,这样就完成了赋值;因为我们可能会连等(l1=l2=l3等等),所以需要返回对象的引用!

list<T>&operator=(list<T> l)//赋值重载{swap(l);return*this;}

实例演示:

voidtest(){
    list<int>l1(5,668); 
    list<int>l2(3,2); 

    cout <<"赋值前:";Print(l2);
    l2 = l1;
    cout <<"赋值后:";Print(l2);}

实例演示

析构函数
析构函数需要释放所有节点以及头节点,在释放前需要判断当前链表是否为空,如果为空直接是否头节点即可!

~list(){if(!empty())//判断是否为空clear();//clear函数会清空所有节点(除了头节点)delete _head;//释放头节点
    _head =nullptr;//头节点指针置空}

容量查询

关于容量的查询,一共是查询节点数,另一个是判断链表是否为空!

  • 节点数size:只需要全部遍历一次计数即可
  • 判空empty:只需要判断头节点_head的_next指针是否指向自己即可
size_t size()const//获取节点数{
    size_t sz =0;
    const_iterator it =begin();while(it !=end()){++sz;++it;}return sz;}boolempty()const{return _head->_next == _head;}//判空,为空返回true

当然,这里的实现是与库中统一,我们也可以单独定义一个 _n 整型变量进行计数!

实例演示:

voidtest(){int arr[]={1,2,3,4,5,6,7,8,9,10};
    list<int>l1(arr, arr+10); 
    cout <<"size:"<< l1.size()<< endl;
    cout <<"empty:"<< l1.empty()<< endl;
    l1.clear();//清空节点
    cout <<"empty:"<< l1.empty()<< endl;}

实例演示


数据访问

list常用迭代器进行数据访问,也提供了头尾节点的访问!
这里为了减少拷贝,返回的是data值的引用;当然,在访问前需要判断链表是否为空!

reference front()//访问头节点返回其data值的引用{assert(!empty());return _head->_next->_data;}

const_reference front()const//访问头节点返回其data值的const引用{assert(!empty());return _head->_next->_data;}

reference back()//访问尾节点返回其data值的引用{assert(!empty());return _head->_prev->_data;}

const_reference back()const//访问尾节点返回其data值的const引用{assert(!empty());return _head->_prev->_data;}

实例演示:

voidtest(){int arr[]={1,2,3,4,5,6,7,8,9,10};
    list<int>l1(arr, arr+10); 
    cout <<"l1:";Print(l1);
    cout <<"front node data:"<< l1.front()<< endl;
    cout <<"back node data:"<< l1.back()<< endl;}

实例演示


节点插删相关

插入删除是list的优点,只要我们拿到对应的节点,就可以立即对其进行插入和删除操作!
list插入和删除

头尾插删

头尾插删的操作主要是对头节点_head的_next节点和_prev节点进行操作!
头尾插删

头插
头插主要是修改原来的第一个有效节点与_head节点的链接关系,在其中链入一个新的节点!

  • 先根据参数构建一个新节点 newnode
  • 找到原第一个有效节点 frontnode
  • 修改 _headfrontnode 链接关系,将 newnode 链入到两节点中
voidpush_front(const_reference val)//头插{
    node* newnode =newnode(val);//新节点
    node* frontnode = _head->_next;//当前第一个有效节点//修改 _head 和 frontnode 链接关系,将 newnode 链入到两节点中
    _head->_next = newnode;//头节点指向新节点
    newnode->_prev = _head;//新节点的前驱指向头节点
    newnode->_next = frontnode;//新节点指向原第一个有效节点
    frontnode->_prev = newnode;//向原第一个有效节点的前驱更新为新节点}

头删
头删也是修改原来的第一个有效节点与_head节点的链接关系,删除第一个有效节点转而让_head指向第二个有效节点!

  • 在删除前检查是否存在有效节点
  • 记录当前第一个有效节点frontnode
  • 记录第二个有效节点frontnext
  • 修改 _head 与第二个有效节点链接关系,将 frontnode 节点剥离链表
  • 删除 frontnode 节点
voidpop_front()//头删{assert(!empty());//检查是否为空链表
    node* frontnode = _head->_next;//当前第一个有效节点
    node* frontnext = frontnode->_next;//记录第二个有效节点//让_head与第二个有效节点链接 - 剥离第一个有效节点
    _head->_next = frontnext;
    frontnext->_prev = _head;//删除原第一个有效节点delete frontnode;
    frontnode =nullptr;}

尾插
尾插节点与头插一样,修改

_head

backnode

的链接关系,链入新节点!

  • 根据参数创建一个新节点 newnode
  • 记录原尾节点 backnode
  • 关系 _headbacknode 之间的链接关系,在其中链入 newnode
voidpush_back(const_reference val)//尾插{
    node* newnode =newnode(val);//新节点
    node* backnode = _head->_prev;//尾节点//更新链接关系
    _head->_prev = newnode;
    newnode->_next = _head;
    newnode->_prev = backnode;
    backnode->_next = newnode;}

尾删
尾删与头删一样,剥离尾节点,修复链接关系即可!

  • 在删除前检查是否存在有效节点
  • 记录原尾节点 backnode
  • 记录尾节点的前驱节点 backprev
  • 更新 _headbackprev 节点的链接更新,剥离尾节点 backnode
  • 删除尾节点 backnode
voidpop_back()//尾删{assert(!empty());//检查是否为空链表
    node* backnode = _head->_prev;//尾节点
    node* backprev = backnode->_prev;//尾节点前驱//更新链接更新-剥离尾节点
    _head->_prev = backprev;
    backprev->_next = _head;//删除尾节点delete backnode;
    backnode =nullptr;}

实例演示:

voidtest(){int arr[]={1,2,3,4,5,6,7,8,9,10};
    list<int> l1;for(constauto& x : arr){
        l1.push_front(x);
        l1.push_back(x);}while(!l1.empty()){Print(l1);
        l1.pop_front();
        l1.pop_back();}}

实例演示

任意位置插删

任意位置插删,我们约定使用迭代器指定插入位置,在当前迭代器节点前插入一个节点!

注意: 无论是任意位置删除还是任意位置插入,在操作后都需要返回一个迭代器!

  • 对于任意位置插入,返回的是新插入节点的迭代器
  • 对于任意位置删除,返回的是删除节点的下一个节点的迭代器

任意位置插入
任意位置插入是在pos迭代器位置前插入一个节点,并返回这个节点的迭代器!

  • 检查pos迭代器中节点是否正常
  • 根据参数申请一个新节点 newnode
  • 获取pos位置节点的前驱节点 posprev
  • 将新节点 newnode 链入 pos节点pos前驱节点 之间
  • 链入成功后返回新插入节点的迭代器
iterator insert(iterator pos, const_reference val){assert(pos._node);//确保节点非空
    node* newnode =newnode(val);//创建新节点
    node* posprev = pos._node->_prev;//获取pos节点的前驱//更新链接关系 - 将新节点链入pos节点与pos前驱节点之间
    newnode->_next = pos._node;
    newnode->_prev = posprev;
    posprev->_next = newnode;
    pos._node->_prev = newnode;//返回新节点迭代器    returniterator(newnode);}

任意位置删除
任意位置删除是删除pos迭代器位置的节点,并返回删除节点的下一个节点的迭代器!

  • 检查链表是否为空pos迭代器中节点是否正常pos节点不为_head头节点
  • 获取 pos节点前驱节点posprev
  • 获取 pos节点后继节点posnext
  • 链接 posprevposnext 节点,剥离pos节点
  • 删除pos节点
  • 返回 posnext节点迭代器(即pos的下一个节点的迭代器)
iterator erase(iterator pos){//链表非空&确保节点非空&不为头节点_headassert(!empty()&& pos._node && pos._node != _head); 

    node* posprev = pos._node->_prev;//pos的下一个节点
    node* posnext = pos._node->_next;//pos的上一个节点
    node* freenode = pos._node;//链接posprev和posnext 剥离 pos 节点
    posprev->_next = posnext;
    posnext->_prev = posprev;delete freenode;//释放pos节点returniterator(posnext);//返回pos节点的下一个节点的迭代器}

当我们实现了任意位置插入和删除,头尾插删就可以简化代码复用任意位置插删函数了!

//头插voidpush_front(const_reference val){insert(begin(), val);}//尾插voidpush_back(const_reference val){insert(end(), val);}//头删voidpop_front(){erase(begin());}//尾删voidpop_back(){erase(--end());}

实例演示:

voidtest(){int arr[]={1,2,3,4,5,6,7,8,9,10};
    list<int>l1(arr,arr+10);Print(l1);
    l1.insert(++l1.begin(),668);//在2前插入668Print(l1);
    l1.erase(--(--l1.end()));//删除9Print(l1);}

实例演示


其他函数

剩余一些常用的函数有:

  • 交换swap – 使用库函数交换头节点即可
  • 清空函数clear – 遍历节点,逐一删除即可,但是保留头节点_head,如果链表为空则不执行
  • 调整函数resize – 调整节点个数,只能在尾部增加节点个数,增加的节点data可以指定值
//交换voidswap(list<T>& l){ std::swap(_head, l._head);}//清空voidclear(){if(empty())return;//如果为空则不执行
    iterator it =begin();//获取迭代器//迭代器遍历逐一删除(后置++返回上一个迭代器)while(it !=end()){erase(it++);}}//调整voidresize(size_t n, const_reference val =T()){if(n >size())while(size()< n){push_back(val);}}

最后

list模拟实现到这里就介绍了,本篇我们简单介绍了一下list的增删功能实现(与链表差别不大),重点介绍了list的迭代器思想,深入理解list的迭代器可以让我们对类和对象又有进一步的认识,如果我们可以理解list迭代器思想,那么list的其他函数对于我们来说都不成问题!

本次 <C++ STL之list模拟实现> 就先介绍到这里啦,希望能够尽可能帮助到大家。

如果文章中有瑕疵,还请各位大佬细心点评和留言,我将立即修补错误,谢谢!

本文整体代码:list模拟实现代码

C-PLUS-PLUS

🌟其他文章阅读推荐🌟
C++ -CSDN博客
C++ -CSDN博客
C++ -CSDN博客
C++ -CSDN博客
C++ -CSDN博客
🌹欢迎读者多多浏览多多支持!🌹


本文转载自: https://blog.csdn.net/m0_73446322/article/details/130900765
版权归原作者 ARMCSKGT 所有, 如有侵权,请联系我们删除。

“C++ [STL之list模拟实现]”的评论:

还没有评论