0


用Python生成答题库,辅助完成XX在线平台视频学习的课后考试

文章目录


前言

随着XX在线视频学习的任务增多,有时刷完视频并不能轻松完成课后考试,本篇文章意在用Python提供解决思路和代码,为顺利通过考试提供可行性方案。


思路

通过截取视频图片,根据规则选取满足条件的图片,再利用OCR识别筛选后的图片,最后生成带有图片链接的Excel答题库文件。总体分为四部分:截图、选图、识图、生成答题库。


引入库和全局变量

import os
import cv2
import shutil
import openpyxl as op
import time
import easyocr
filepath=r'D:\moocxuetang'#自定义文件存放位置
videopath =r'D:\moocxuetang\video'#自定义视频存放位置
picpath=r'D:\moocxuetang\picture'#自定义截图存放位置
picchoosepath = filepath +'\\'+'picture_choose'#自定义选图存放位置
txt=[]#图片识别列表
hylink=[]#图片链接位置列表

一、截图

截图参考文章:用python玩转视频帧率
截图参考文章:Python 之CV2详解
避坑指南
注意图片名不要带中文,保存会有问题,会出现程序运行正常,实际没保存到的现象。
代码如下:

# 截取单个视频文件图片defget_pic(videoname='1.1XXXXX.mp4'):
    videoname = videoname
    video = cv2.VideoCapture(videopath+'\\'+videoname)###########获取视频信息(帧率,分辨率,总帧数,时长)############### 帧率
    fps =int(round(video.get(cv2.CAP_PROP_FPS)))# 分辨率-宽度
    width =int(video.get(cv2.CAP_PROP_FRAME_WIDTH))# 分辨率-高度
    height =int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))# 总帧数
    frame_counter =int(video.get(cv2.CAP_PROP_FRAME_COUNT))# 时长,单位s
    duration = frame_counter / fps
    print('帧率:%s'% fps)print('分辨率-宽度:%s'% width)print('分辨率-高度:%s'% height)print('总帧数:%s'% frame_counter)print('总时长:%s秒'% duration)####################根据视频信息截取图片#####################
    i =0
    j =0whileTrue:
        i +=1
        flag, frame = video.read()#读取视频if flag:if i %(fps*4)==0:#间隔4秒截图1张
                j+=1
                picname=videoname[0:3]+'.'+str(j)+'.jpg'#根据视频文件名自行调整,将截图数量加到图片文件名中,方便后续查找
                cv2.imwrite(picpath+'\\'+picname, frame)#保存截图print('%s保存完毕!'%picname)else:break
    video.release()#视频释放print('视频关键帧截图完毕!!!')
#遍历视频文件,截取所有视频文件图片defcut():###########建立视频截图文件夹####################ifnot os.path.exists(picpath):#判断是否存在截图文件夹,不存在则建立文件夹
        os.makedirs(picpath)print('视频截图文件夹已建立')else:#存在则清空再建立文件夹
        shutil.rmtree(picpath)
        os.makedirs(picpath)print('原有图片已清除,已建立新的视频截图文件夹')
    videonames = os.listdir(videopath)
    start_time = time.time()for videoname in videonames:
        get_pic(videoname)
    end_time = time.time()
    t =(end_time - start_time)/60#记录截图总共用时多少分钟print('截图总共用时%s分钟'%str(round(t)))

二、选图

选图参考文章:OpenCV—Python 图像指定区域裁剪

代码如下:

#对单张图片进行规则化选取,满足条件则保存到选图文件夹defpic_choose(picfullname=r'D:\XXXX\picture\1.1.92.jpg',picchoosepath=r'D:\XXXX\picture_choose'):
    picfullname = picfullname #单张图片的全路径名称,例如:'D:\XXXX\picture\1.1.92.jpg'
    picchoosepath=picchoosepath #选图文件夹的位置,例如:'D:\XXXX\picture_choose'
    picname=picfullname.split('\\')[-1]#单张图片的名称,例如:'1.1.92.jpg'################将图片以灰度图片导入,找出符合规则的图片,裁剪适当位置并保存灰度图片到选图文件夹#############
    pic=cv2.imread(picfullname,cv2.IMREAD_GRAYSCALE)#将图片以灰度图片导入ifabs(pic[59][40]-pic[59][45])<10andabs(pic[59][45]-pic[59][50])<10andabs(pic[59][50]-pic[59][55])<10andabs(pic[59][55]-pic[59][60])<10andabs(pic[59][60]-pic[59][65])<10 \
        andabs(pic[59][40]-pic[79][40])>100andabs(pic[59][45]-pic[79][45])>100andabs(pic[59][50]-pic[79][50])>100andabs(pic[59][55]-pic[79][55])>100andabs(pic[59][60]-pic[79][60])>100andabs(pic[59][65]-pic[79][65])>100:#找出符合规则的图片
        cv2.imwrite(picchoosepath+'\\'+picname,pic[43:,:])#裁剪适当位置并保存灰度图片到选图文件夹elifabs(pic[59][40]-pic[59][45])<10andabs(pic[59][45]-pic[59][50])<10andabs(pic[59][50]-pic[59][55])<10andabs(pic[59][55]-pic[59][60])<10andabs(pic[59][60]-pic[59][65])<10 \
        andabs(pic[59][40]-pic[79][40])>50andabs(pic[59][45]-pic[79][45])>50andabs(pic[59][50]-pic[79][50])>50andabs(pic[59][55]-pic[79][55])>50andabs(pic[59][60]-pic[79][60])>50andabs(pic[59][65]-pic[79][65])>50:#找出符合规则的图片
        cv2.imwrite(picchoosepath+'\\'+picname,pic[43:,:])#裁剪适当位置并保存灰度图片到选图文件夹
#遍历截图文件夹,对所有图片进行规则化筛选defchoose():############创建选图文件夹#####################ifnot os.path.exists(picchoosepath):#判断是否存在截图文件夹,不存在则建立文件夹
        os.makedirs(picchoosepath)print('选图文件夹已建立')else:#存在则清空再建立文件夹
        shutil.rmtree(picchoosepath)
        os.makedirs(picchoosepath)print('原有图片已清除,已建立新的选图文件夹')
    start_time = time.time()
    picnames = os.listdir(picpath)
    m =0for picname in picnames:
        picfullname = picpath +'\\'+ picname
        m +=1print('开始选图:第%s张'% m)
        pic_choose(picfullname)
    end_time = time.time()
    t =(end_time - start_time)/60print('选图完成,用时%s分钟!!!'% t)#记录选图总共用时多少分钟
    picchoosenames = os.listdir(picchoosepath)print('共选出%s张图片'%len(picchoosenames))#记录总共选图过少张

三、识图

识图参考文章:适合小白的几个入门级Python ocr识别库
识图参考文章:easyocr快速安装及图片文字提取演示(小语种)
easyocr技术文档

避坑指南
根据识图参考文章,可对中文的识别的库有3个:
1、pytesseract
pytesseract需要配合安装在本地的tesseract-ocr.exe文件一起使用。对中文识别很差,第一次用的就是这个基本用不了。
2、PaddleOCR
PaddleOCR是百度开源的一款基于深度学习的ocr识别库,对中文的识别精度相当不错,可以应付绝大多数的文字提取需求。需要安装3个库,依赖库也比较多,版本没对上就不行,下载也慢,折腾了很久还是选择放弃。
3、easyocr
github上一万多个star的开源ocr项目,支持80多种语言的识别,识别精度超高。最终选择,记得要下载craft_mlt_25k.zip(文字检测模型)、zh_sim_g2.zip(中文模型)、english_g2.zip(英文模型),文章里有具体说明。

建议:
1、使用清华镜像源,在使用pip的时候加参数-i https://pypi.tuna.tsinghua.edu.cn/simple
2、下载库的时候会遇到版本问题,多折腾折腾,会有不少收获
3、电脑下载模型慢可以试试用手机下载
代码如下:

#使用easyocr库对单张图片识别,单张识图时间大约6秒(根据个人电脑情况)defeasy_ocr(picchoosefullname=r'D:\XXXX\picture_choose\1.1.100.jpg'):
    picchoosefullname = picchoosefullname #选图文件夹中的图片全路径名称,例如:'D:\XXXX\picture_choose\1.1.100.jpg'
    reader = easyocr.Reader(['ch_sim'],gpu=False)# 没有gpu的话需要加上gpu=False
    result = reader.readtext(picchoosefullname,detail=0,batch_size=32)#参数设置可以参考技术文档,batch_size=32试验了一下,比默认设置快大约1秒print(result)
    txt.append(''.join(result))#将识别的文本合并为一项print(txt)return txt
#遍历选图文件夹,对所有图片进行识别defknow():
    start_time = time.time()
    picchoosenames = os.listdir(picchoosepath)
    n=0for picchoosename in picchoosenames:
        picchoosefullname = picchoosepath+'\\'+picchoosename
        n+=1print('开始识图:第%s张'%n)
        txt=easy_ocr(picchoosefullname)#获取图片识别列表
        hylink.append(picchoosefullname)#获取图片链接位置列表print('列表长度为:',len(txt))print('类型为',type(txt))
    end_time = time.time()
    t =(end_time - start_time)/60print('识图完成,用时%s分钟!!!'% t)#记录识图总共用时多少分钟

四、生成答题库

代码如下:

defanswer():print('开始创建答题库。。。')
    answer_path=r'D:\XXXX\answer.xlsx'#自定义答题库Excel路径,提前建好answer.xlsx文件
    wb = op.load_workbook(answer_path)#读入文件
    sheet = wb['Sheet1']
    sheet.delete_cols(1,1)#清空原有数据for i inrange(len(txt)):
        sheet.cell(i+1,1,txt[i])#将图片识别列表写入第1列
        sheet.cell(i+1,1,txt[i]).hyperlink=hylink[i]#将图片链接位置列表写入对应位置
    wb.save(answer_path)
    f =open(r'D:\XXXX\answer.txt','w')#自定义答题库文本路径,提前建好answer.txt文件(避免Excel出错,导致全功尽弃的备份手段)
    p=0for line in txt:
        p+=1
        f.write('第'+str(p)+'张'+'\n'+line +'\n')
    f.close()print('答题库已生成!!!')

完整代码

import os
import cv2
import shutil
import openpyxl as op
import time
import easyocr
filepath=r'D:\moocxuetang'#自定义文件存放位置
videopath =r'D:\moocxuetang\video'#自定义视频存放位置
picpath=r'D:\moocxuetang\picture'#自定义截图存放位置
picchoosepath = filepath +'\\'+'picture_choose'#自定义选图存放位置
txt=[]#图片识别列表
hylink=[]#图片链接列表#批量更改文件名(加上后缀.mp4),文章没介绍defRenamevideo():
    videonames = os.listdir(videopath)for videoname in videonames:
        oldvideoname = videopath +'\\'+ videoname
        newvideoname = oldvideoname +'.mp4'
        os.rename(oldvideoname, newvideoname)print(newvideoname)defget_pic(videoname='1.1XXXXX.mp4'):pass#前文有,不再重复defcut():pass#前文有,不再重复defpic_choose(picfullname=r'D:\XXXX\picture\1.1.92.jpg',picchoosepath=r'D:\XXXX\picture_choose'):pass#前文有,不再重复defchoose():pass#前文有,不再重复defeasy_ocr(picchoosefullname=r'D:\XXXX\picture_choose\1.1.100.jpg'):pass#前文有,不再重复defknow():pass#前文有,不再重复defanswer():pass#前文有,不再重复if __name__ =='__main__':
    cut()
    choose()
    know()
    answer()

最终效果

文件夹最终所包含的内容:
文件夹最终所包含的内容
通过答题库查询,顺利通过考试:

在这里插入图片描述

作者语

本着白嫖多年、回馈社会的态度,写下这篇文章,希望对你有所帮助,有不到位之处请多多包涵,有疑问请留言,我会尽力回答。

标签: python opencv 视频

本文转载自: https://blog.csdn.net/weixin_43704123/article/details/125249520
版权归原作者 不信邪111 所有, 如有侵权,请联系我们删除。

“用Python生成答题库,辅助完成XX在线平台视频学习的课后考试”的评论:

还没有评论