首先YoloX的项目代码来自Bubbliiiing,Swin Transformer的项目代码来自太阳花的小绿豆。感谢两位大佬在GitHub上面提供的资源。
我的GitHub链接:https://github.com/zhengzihe/YoloX-based-on-Swin-Transformer
Swin Transformer取如下三个有效特征层:
其中代码部分PatchMerging和SwinTransformerBlock合并在了一起,所以取出的这三个有效特征层分别为下采样8倍,16倍和32倍的特征层。正好对应下面yolox的cspdarknet输入的下采样8倍,16倍和32倍的三个有效特征层。
在左边三个箭头更换为Swin Transformer输出的特征。即可完成骨干网络的替换。
引入骨干网络
我是直接复制model.py文件到我的nets/目录下,方便yolo.py文件import。
model.py文件来自太阳花的小绿豆GitHub下deep-learning-for-image-processing-master/pytorch_classification/swin_transformer/model.py
修改模型搭建过程:
# build layers
self.layer1 = BasicLayer(dim=int(embed_dim *2**0),
depth=depths[0],
num_heads=num_heads[0],
window_size=window_size,
mlp_ratio=self.mlp_ratio,
qkv_bias=qkv_bias,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[sum(depths[:0]):sum(depths[:0+1])],
norm_layer=norm_layer,
downsample=PatchMerging if(0< self.num_layers -1)elseNone,
use_checkpoint=use_checkpoint)
self.layer2 = BasicLayer(dim=int(embed_dim *2**1),
depth=depths[1],
num_heads=num_heads[1],
window_size=window_size,
mlp_ratio=self.mlp_ratio,
qkv_bias=qkv_bias,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[sum(depths[:1]):sum(depths[:1+1])],
norm_layer=norm_layer,
downsample=PatchMerging if(1< self.num_layers -1)elseNone,
use_checkpoint=use_checkpoint)
self.layer3 = BasicLayer(dim=int(embed_dim *2**2),
depth=depths[2],
num_heads=num_heads[2],
window_size=window_size,
mlp_ratio=self.mlp_ratio,
qkv_bias=qkv_bias,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[sum(depths[:2]):sum(depths[:2+1])],
norm_layer=norm_layer,
downsample=PatchMerging if(2< self.num_layers -1)elseNone,
use_checkpoint=use_checkpoint)
self.layer4 = BasicLayer(dim=int(embed_dim *2**3),
depth=depths[3],
num_heads=num_heads[3],
window_size=window_size,
mlp_ratio=self.mlp_ratio,
qkv_bias=qkv_bias,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[sum(depths[:3]):sum(depths[:3+1])],
norm_layer=norm_layer,
downsample=PatchMerging if(3< self.num_layers -1)elseNone,
use_checkpoint=use_checkpoint)
修改forward函数:
defforward(self, x):# x: [B, L, C]
x, H, W = self.patch_embed(x)
x = self.pos_drop(x)
feature4x = x
# for layer in self.layers:# x, H, W = layer(x, H, W)
feature8x, H, W = self.layer1(feature4x, H, W)
feature16x, H, W = self.layer2(feature8x, H, W)
feature32x, H, W = self.layer3(feature16x, H, W)
feature32x2, H, W = self.layer4(feature32x, H, W)# x = self.norm(x) # [B, L, C]# x = self.avgpool(x.transpose(1, 2)) # [B, C, 1]# x = torch.flatten(x, 1)# x = self.head(x)return feature4x, feature8x, feature16x, feature32x, feature32x2
至此我们引入了feature下采样4,8,16,32,64倍的特征层,我们将使用8,16,32下采样倍率的部分。
YOLOPAFPN层修改
首先import进模型:
from.model import swin_base_patch4_window7_224
其次修改backbone:
self.backbone = swin_base_patch4_window7_224()
self.embed_dim = swin_base_patch4_window7_224().embed_dim
我这里使用的是base模块。
在__ init __函数中修改
self.feature32x2feat3 = nn.Conv2d(self.embed_dim *8,int(in_channels[2]* width), kernel_size=1)
self.feature16x2feat2 = nn.Conv2d(self.embed_dim *4,int(in_channels[1]* width), kernel_size=1)
self.feature8x2feat1 = nn.Conv2d(self.embed_dim *2,int(in_channels[0]* width), kernel_size=1)
在forward函数中修改(加入到最前面):
defforward(self,input):
feature4x, feature8x, feature16x, feature32x, feature32x2 = self.backbone.forward(input)# print("orignalfeature32x2size:", feature32x2.size())# print("orignalfeature32size:", feature32x.size())# print("orignalfeature16size:", feature16x.size())# print("orignalfeature8size:", feature8x.size())# print("orignalfeature4size:", feature4x.size())
feature32x_sqrt =int(math.sqrt(feature32x.size()[1]))
feature16x_sqrt =int(math.sqrt(feature16x.size()[1]))
feature8x_sqrt =int(math.sqrt(feature8x.size()[1]))
channel_feature32 = feature32x.size()[2]
channel_feature16 = feature16x.size()[2]
channel_feature8 = feature8x.size()[2]
feature32x = feature32x.permute(0,2,1).contiguous().view(-1, channel_feature32, feature32x_sqrt, feature32x_sqrt)# print("after reshape feature32:", feature32x.size())
feature16x = feature16x.permute(0,2,1).contiguous().view(-1, channel_feature16, feature16x_sqrt, feature16x_sqrt)# print("after reshape feature16:", feature16x.size())
feature8x = feature8x.permute(0,2,1).contiguous().view(-1, channel_feature8, feature8x_sqrt, feature8x_sqrt)# print("after reshpae feature8:", feature8x.size())
feat3 = self.feature32x2feat3(feature32x)
feat2 = self.feature16x2feat2(feature16x)
feat1 = self.feature8x2feat1(feature8x)
将原本的feat3,feat2,feat1替换为使用Swin Transformer的特征。
修改配置phi == 'l’为其他值只会更改FPN层中的通道宽度。对swin transformer的backbone没有影响。
使用预训练权重
因为对模型的backbone进行了更改,因此无法载入GitHub上提供预训练权重,会报错key不匹配的问题。
这里有我使用voc2007数据集训练的预训练权重,可以使用(针对phi=‘l’):
链接:https://pan.baidu.com/s/1FX6wMvcfE674UZYp4j8OCA
提取码:d4c8
model_path =""# model_path 置为空,不读取预训练权重
#------------------------------------------------------------------#
Init_Epoch =0
Freeze_Epoch =0
Freeze_batch_size =16#------------------------------------------------------------------## 解冻阶段训练参数# 此时模型的主干不被冻结了,特征提取网络会发生改变# 占用的显存较大,网络所有的参数都会发生改变# UnFreeze_Epoch 模型总共训练的epoch# Unfreeze_batch_size 模型在解冻后的batch_size#------------------------------------------------------------------#
UnFreeze_Epoch =300
Unfreeze_batch_size =16#------------------------------------------------------------------## Freeze_Train 是否进行冻结训练# 默认先冻结主干训练后解冻训练。#------------------------------------------------------------------#
Freeze_Train =False
需要将Freeze_Train 设置为 False,这样模型不加载预训练权重,所有层全部开始训练,非常占显存。
大功告成!
swin_transformer具体参数量:
swin_tiny_patch4_window7_224Total
GFLOPS:154.459G
Total params:55.674M
swin_small_patch4_window7_224
Total GFLOPS:224.729G
Total params:76.949M
swin_base_patch4_window7_224
Total GFLOPS:336.684G
Total params:115.169M
版权归原作者 安淮葭 所有, 如有侵权,请联系我们删除。