0


计算机视觉框架OpenMMLab开源学习(三):图像分类实战

前言:本篇主要偏向图像分类实战部分,使用MMclassification工具进行代码应用,最后对水果分类进行实战演示,本次环境和代码配置部分省略,具体内容建议参考前一篇文章:计算机视觉框架OpenMMLab开源学习(二):图像分类

计算机视觉框架OpenMMLab开源学习(三):图像分类实战

一、安装OpenMMLab v2.0

Step 1. Install MMCV

mim install "mmcv>=2.0.0rc0"

Step 2. Install MMClassification and MMDetection

mim install "mmcls>=1.0.0rc0" "mmdet>=3.0.0rc0"

代码模版讲解:

model = dict(
    type='ImageClassifier',     # 分类器类型
    backbone=dict(
        type='ResNet',          # 主干网络类型
        depth=50,               # 主干网网络深度, ResNet 一般有18, 34, 50, 101, 152 可以选择
        num_stages=4,           # 主干网络状态(stages)的数目,这些状态产生的特征图作为后续的 head 的输入。
        out_indices=(3, ),      # 输出的特征图输出索引。越远离输入图像,索引越大
        frozen_stages=-1,       # 网络微调时,冻结网络的stage(训练时不执行反相传播算法),若num_stages=4,backbone包含stem 与 4 个 stages。frozen_stages为-1时,不冻结网络; 为0时,冻结 stem; 为1时,冻结 stem 和 stage1; 为4时,冻结整个backbone
        style='pytorch'),       # 主干网络的风格,'pytorch' 意思是步长为2的层为 3x3 卷积, 'caffe' 意思是步长为2的层为 1x1 卷积。
    neck=dict(type='GlobalAveragePooling'),    # 颈网络类型
    head=dict(
        type='LinearClsHead',     # 线性分类头,
        num_classes=1000,         # 输出类别数,这与数据集的类别数一致
        in_channels=2048,         # 输入通道数,这与 neck 的输出通道一致
        loss=dict(type='CrossEntropyLoss', loss_weight=1.0), # 损失函数配置信息
        topk=(1, 5),              # 评估指标,Top-k 准确率, 这里为 top1 与 top5 准确率
    ))

二、Pytorch图像分类任务

本次任务训练数据为FashionMNIST,完整代码如下:

# https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html

import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor

# Training

## Construct Dataset and Dataloader
training_data = datasets.FashionMNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor(),
)
test_data = datasets.FashionMNIST(
    root="data",
    train=False,
    download=True,
    transform=ToTensor(),
)

batch_size = 64

train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)

## Define model
class NeuralNetwork(nn.Module):
    def __init__(self):
        super(NeuralNetwork, self).__init__()
        self.flatten = nn.Flatten()
        self.linear_relu_stack = nn.Sequential(
            nn.Linear(28*28, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, 10)
        )

    def forward(self, x):
        x = self.flatten(x)
        logits = self.linear_relu_stack(x)
        return logits

device = "cuda" if torch.cuda.is_available() else "cpu"
model = NeuralNetwork().to(device)

## Define loss function and Optimizer
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)

## Inner loop for training
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)
    model.train()
    for batch, (X, y) in enumerate(dataloader):
        X, y = X.to(device), y.to(device)

        # Compute prediction error
        pred = model(X)
        loss = loss_fn(pred, y)

        # Backpropagation
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # Output Logs
        if batch % 100 == 0:
            loss, current = loss.item(), batch * len(X)
            print(f"loss: {loss:>7f}  [{current:>5d}/{size:>5d}]")

## Inner loop for test
def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    model.eval()
    test_loss, correct = 0, 0
    with torch.no_grad():
        for X, y in dataloader:
            X, y = X.to(device), y.to(device)
            pred = model(X)
            test_loss += loss_fn(pred, y).item()
            correct += (pred.argmax(1) == y).type(torch.float).sum().item()
    test_loss /= num_batches
    correct /= size
    print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")

## Launch training / test loops#
epochs = 5
for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train(train_dataloader, model, loss_fn, optimizer)
    test(test_dataloader, model, loss_fn)
print("Done!")

## Saving Models

torch.save(model.state_dict(), "model.pth")
print("Saved PyTorch Model State to model.pth")

# Deployment

## Loading Models
model = NeuralNetwork()
model.load_state_dict(torch.load("model.pth"))

# Predict new images

classes = [
    "T-shirt/top",
    "Trouser",
    "Pullover",
    "Dress",
    "Coat",
    "Sandal",
    "Shirt",
    "Sneaker",
    "Bag",
    "Ankle boot",
]

model.eval()
x, y = test_data[0][0], test_data[0][1]
with torch.no_grad():
    pred = model(x)
    predicted, actual = classes[pred[0].argmax(0)], classes[y]
    print(f'Predicted: "{predicted}", Actual: "{actual}"')

三、利用MMClassification提供的预训练模型推理:

安装环境:

pip install openmim, mmengine
mim install mmcv-full mmcls

Inference using high-level API

from mmcls.apis import init_model, inference_model

model = init_model('mobilenet-v2_8xb32_in1k.py', 
                   'mobilenet_v2_batch256_imagenet_20200708-3b2dc3af.pth', 
                   device='cuda:0')
load checkpoint from local path: mobilenet_v2_batch256_imagenet_20200708-3b2dc3af.pth
result = inference_model(model, 'banana.png')
result
{'pred_label': 954, 'pred_score': 0.9999284744262695, 'pred_class': 'banana'}
from mmcls.apis import show_result_pyplot

show_result_pyplot(model, 'banana.png', result)

PyTorch codes under the hood

Let write some raw PyTorch codes to do the same thing.

These are actual codes wrapped in high-level APIs.

construct an

ImageClassifier

Note: current implementation only allow configs of backbone, neck and classification head instead of Python objects.

from mmcls.models import ImageClassifier

classifier = ImageClassifier(
    backbone=dict(type='MobileNetV2', widen_factor=1.0),
    neck=dict(type='GlobalAveragePooling'),
    head=dict(
        type='LinearClsHead',
        num_classes=1000,
        in_channels=1280)
)

Load trained parameters

import torch

ckpt = torch.load('mobilenet_v2_batch256_imagenet_20200708-3b2dc3af.pth')
classifier.load_state_dict(ckpt['state_dict'])

Construct data preprocessing pipeline

Important: A models work only if image preprocessing pipelines is correct.

from mmcls.datasets.pipelines import Compose

test_pipeline = Compose([
    dict(type='LoadImageFromFile'),
    dict(type='Resize', size=(256, -1), backend='pillow'),
    dict(type='CenterCrop', crop_size=224),
    dict(
        type='Normalize',
        mean=[123.675, 116.28, 103.53],
        std=[58.395, 57.12, 57.375],
        to_rgb=True),
    dict(type='ImageToTensor', keys=['img']),
    dict(type='Collect', keys=['img'])
])
data = dict(img_info=dict(filename='banana.png'), img_prefix=None)
data = test_pipeline(data)
data
{'img_metas': DataContainer({'filename': 'banana.png', 'ori_filename': 'banana.png', 'ori_shape': (403, 393, 3), 'img_shape': (224, 224, 3), 'img_norm_cfg': {'mean': array([123.675, 116.28 , 103.53 ], dtype=float32), 'std': array([58.395, 57.12 , 57.375], dtype=float32), 'to_rgb': True}}),
 'img': tensor([[[ 0.3309,  0.2967,  0.3138,  ...,  2.0263,  2.0092,  1.9920],
          [ 0.3481,  0.3309,  0.2282,  ...,  2.0263,  2.0092,  1.9920],
          [ 0.2796,  0.2967,  0.2967,  ...,  1.9920,  2.0263,  1.9749],
          ...,
          [ 0.1939,  0.1768,  0.2282,  ...,  0.3994,  0.3309,  0.3823],
          [ 0.1426,  0.1254,  0.2111,  ...,  0.5878,  0.5364,  0.5536],
          [-0.0116, -0.0801,  0.1597,  ...,  0.5707,  0.5536,  0.5364]],
 
         [[ 0.3803,  0.3803,  0.3803,  ...,  2.1660,  2.1485,  2.1134],
          [ 0.4153,  0.4153,  0.3102,  ...,  2.1835,  2.1310,  2.1134],
          [ 0.3452,  0.3803,  0.3803,  ...,  2.1134,  2.1485,  2.1134],
          ...,
          [ 0.2752,  0.2577,  0.3102,  ...,  0.5028,  0.4328,  0.4328],
          [ 0.2227,  0.1877,  0.3102,  ...,  0.6604,  0.6254,  0.5728],
          [ 0.0301, -0.0049,  0.2402,  ...,  0.6604,  0.6254,  0.5728]],
 
         [[ 0.5485,  0.5485,  0.5485,  ...,  2.3437,  2.3263,  2.2914],
          [ 0.5834,  0.5834,  0.4788,  ...,  2.3611,  2.3088,  2.2914],
          [ 0.5136,  0.5485,  0.5485,  ...,  2.3088,  2.3437,  2.3088],
          ...,
          [ 0.4091,  0.3916,  0.4439,  ...,  0.5834,  0.5136,  0.5311],
          [ 0.3568,  0.3045,  0.4265,  ...,  0.7576,  0.7228,  0.7054],
          [ 0.1651,  0.1128,  0.3742,  ...,  0.7576,  0.7402,  0.7054]]])}

equivalent in

torchvision
from PIL import Image
from torchvision.transforms import Compose, Resize, CenterCrop, Normalize, ToTensor

tv_transform = Compose([Resize(256), 
                        CenterCrop(224), 
                        ToTensor(),
                        Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
                        ])

image = Image.open('banana.png').convert('RGB')
tv_data = tv_transform(image)

Forward through the model

## IMPORTANT: set the classifier to eval mode
classifier.eval()

imgs = data['img'].unsqueeze(0)
imgs = tv_data.unsqueeze(0)

with torch.no_grad():
    # class probabilities
    prob = classifier.forward_test(imgs)[0]
    # features
    feat = classifier.extract_feat(imgs, stage='neck')[0]
    
print(len(prob))
print(prob.argmax().item())
print(feat.shape)
1000
954
torch.Size([1, 1280])

3.使用MMClassificaiton完整进行水果分类实战:

数据集下载:

GitHub - TommyZihao/MMClassification_Tutorials: Jupyter notebook tutorials for MMClassificationJupyter notebook tutorials for MMClassification. Contribute to TommyZihao/MMClassification_Tutorials development by creating an account on GitHub.https://github.com/TommyZihao/MMClassification_Tutorials

代码框架:

def main():
    model = build_classifier(cfg.model)
    model.init_weights()

    datasets = [build_dataset(cfg.data.train)]

    train_model(
        model,
        datasets,
        cfg,
        distributed=distributed,
        validate=(not args.no_validate),
        timestamp=timestamp,
        device=cfg.device,
        meta=meta)
mmcls/apis/train_model.py

def train_model(model,
                dataset,
                cfg):

    data_loaders = [build_dataloader(ds, **train_loader_cfg) for ds in dataset]

    optimizer = build_optimizer(model, cfg.optimizer)

    runner = build_runner(
        cfg.runner,
        default_args=dict(
            model=model,
            optimizer=optimizer))

    runner.register_training_hooks(
        cfg.lr_config,
        optimizer_config,
        cfg.checkpoint_config,
        cfg.log_config,
        cfg.get('momentum_config', None),
        custom_hooks_config=cfg.get('custom_hooks', None))

    runner.run(data_loaders, cfg.workflow)
mmcv/runner/epoch_based_runner.py

class EpochBasedRunner(BaseRunner):

    def run_iter(self, data_batch: Any, train_mode: bool, **kwargs) -> None:
        if train_mode:
            outputs = self.model.train_step(data_batch, self.optimizer, **kwargs)
        else:
            outputs = self.model.val_step(data_batch, self.optimizer, **kwargs)

        self.outputs = outputs

    def train(self, data_loader, **kwargs):
        self.model.train()
        self.data_loader = data_loader
        for i, data_batch in enumerate(self.data_loader):
            self.run_iter(data_batch, train_mode=True, **kwargs)
            self.call_hook('after_train_iter')
mmcls/models/classifiers/base.py

class BaseClassifier(BaseModule, metaclass=ABCMeta):

    def forward(self, img, return_loss=True, **kwargs):
        """Calls either forward_train or forward_test depending on whether
        return_loss=True.

        Note this setting will change the expected inputs. When
        `return_loss=True`, img and img_meta are single-nested (i.e. Tensor and
        List[dict]), and when `resturn_loss=False`, img and img_meta should be
        double nested (i.e.  List[Tensor], List[List[dict]]), with the outer
        list indicating test time augmentations.
        """
        if return_loss:
            return self.forward_train(img, **kwargs)
        else:
            return self.forward_test(img, **kwargs)

    def train_step(self, data, optimizer=None, **kwargs):
        losses = self(**data)
        loss, log_vars = self._parse_losses(losses)

        outputs = dict(
            loss=loss, log_vars=log_vars, num_samples=len(data['img'].data))

        return outputs
mmcls/models/classifiers/image.py

class ImageClassifier(BaseClassifier):

    def __init__(self,
                 backbone,
                 neck=None,
                 head=None,
                 pretrained=None,
                 train_cfg=None,
                 init_cfg=None):
        super(ImageClassifier, self).__init__(init_cfg)

        if pretrained is not None:
            self.init_cfg = dict(type='Pretrained', checkpoint=pretrained)
        self.backbone = build_backbone(backbone)

        if neck is not None:
            self.neck = build_neck(neck)

        if head is not None:
            self.head = build_head(head)

    def extract_feat(self, img):
        x = self.backbone(img)

        if self.with_neck:
            x = self.neck(x)

        return x

    def forward_train(self, img, gt_label, **kwargs):
        x = self.extract_feat(img)

        losses = dict()
        loss = self.head.forward_train(x, gt_label)

        losses.update(loss)

        return losses
mmcv/runner/hooks/optimizer.py

class OptimizerHook(Hook):
    def after_train_iter(self, runner):
        runner.optimizer.zero_grad()
        runner.outputs['loss'].backward()
        runner.optimizer.step()

总结:本篇主要偏向图像分类实战部分,使用MMclassification工具进行代码应用,熟悉其框架应用,为后续处理不同场景下分类问题提供帮助。

本文参考:GitHub - wangruohui/sjtu-openmmlab-tutorial


本文转载自: https://blog.csdn.net/qq_36816848/article/details/128884766
版权归原作者 GoAI 所有, 如有侵权,请联系我们删除。

“计算机视觉框架OpenMMLab开源学习(三):图像分类实战”的评论:

还没有评论