文章目录
前言
Hello!小伙伴!
非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出~自我介绍 ଘ(੭ˊᵕˋ)੭
昵称:海轰
标签:程序猿|C++选手|学生
简介:因C语言结识编程,随后转入计算机专业,有幸拿过一些国奖、省奖…已保研。目前正在学习C++/Linux/Python
学习经验:扎实基础 + 多做笔记 + 多敲代码 + 多思考 + 学好英语!初学Python 小白阶段
文章仅作为自己的学习笔记 用于知识体系建立以及复习
题不在多 学一题 懂一题
知其然 知其所以然!本文仅从Pyhton如何解决建模问题出发
未对建模思路等进行深一步探索
线性规划
线性规划求解需要清晰两部分,目标函数(max, min) 和 约束条件 ,求解前应转化为标准形式:
样例1:求解下列线性规划问题
m
a
x
z
=
2
x
1
+
3
x
2
−
5
x
3
max z = 2x_1 + 3x_2 - 5x_3
maxz=2x1+3x2−5x3
s
.
t
.
=
{
x
1
+
x
2
+
x
3
=
7
2
x
1
−
5
x
2
+
x
3
>
=
10
x
1
+
3
x
2
+
x
3
<
=
12
x
1
,
x
2
,
x
3
>
=
0
s.t. = \begin{cases} x_1 + x_2 + x_3 = 7 \\ 2x_1 - 5x_2 + x_3 >= 10\\ x_1 + 3x_2 + x_3 <= 12\\ x_1,x_2,x_3 >= 0 \end{cases}
s.t.=⎩⎪⎪⎪⎨⎪⎪⎪⎧x1+x2+x3=72x1−5x2+x3>=10x1+3x2+x3<=12x1,x2,x3>=0
scipy库求解
涉及知识点
- optimize.linprog
Demo代码
from scipy import optimize
import numpy as np
c = np.array([2,3,-5])
A = np.array([[-2,5,-1],[1,3,1]])
B = np.array([-10,12])
Aeq = np.array([[1,1,1]])
Beq = np.array([7])
res = optimize.linprog(-c,A,B,Aeq,Beq)
res
运行结果
注:x结果为array数组,从左到右依次表示x1 x2 x3…
对很大/小的数不使用科学计数法
np.set_printoptions(suppress=True)
Demo代码
from scipy import optimize
import numpy as np
np.set_printoptions(suppress=True)
c = np.array([2,3,-5])
A = np.array([[-2,5,-1],[1,3,1]])
B = np.array([-10,12])
Aeq = np.array([[1,1,1]])
Beq = np.array([7])
res = optimize.linprog(-c,A,B,Aeq,Beq)
res
运行结果
样例2:求解下列线性规划问题
pulp库求解
设计知识点
- LpProblem(name=‘NoName’, sense=LpMinimize)
- solve(solver=None, **kwargs)
- LpVariable(name, lowBound=None, upBound=None, cat=‘Continuous’, e=None)
Demo代码
import pulp as pp
# 目标函数的系数
z =[2,3,1]
a =[[1,4,2],[3,2,0]]
b =[8,6]
aeq =[[1,2,4]]
beq =[101]# 确定最大最小化问题,当前确定的是最大化问题
m = pp.LpProblem(sense=pp.LpMaximize)# 定义三个变量放到列表中
x =[pp.LpVariable(f'x{i}', lowBound=0)for i in[1,2,3]]# 定义目标函数,并将目标函数加入求解的问题中
m += pp.lpDot(z, x)# lpDot 用于计算点积# 设置比较条件for i inrange(len(a)):
m +=(pp.lpDot(a[i], x)>= b[i])# 设置相等条件for i inrange(len(aeq)):
m +=(pp.lpDot(aeq[i], x)== beq[i])# 求解
m.solve()# 输出结果print(f'优化结果:{pp.value(m.objective)}')print(f'参数取值:{[pp.value(var)for var in x]}')
运行结果:
注:
- 最优结果为202
- x1 = 101 x2=0 x3=0
样例3.运输问题
Demo代码
import pulp
import numpy as np
from pprint import pprint
deftransportation_problem(costs, x_max, y_max):
row =len(costs)
col =len(costs[0])
prob = pulp.LpProblem('Transportation Proble',sense=pulp.LpMaximize)
var =[[pulp.LpVariable(f'x{i}{j}',lowBound=0,cat=pulp.LpInteger)for j inrange(col)]for i inrange(row)]# 转为一维
flatten =lambda x:[y for l in x for y in flatten(l)]iftype(x)islistelse[x]
prob += pulp.lpDot(flatten(var),costs.flatten())for i inrange(row):
prob +=(pulp.lpSum(var[i])<= x_max[i])for j inrange(col):
prob +=(pulp.lpSum([var[i][j]for i inrange(row)])<= y_max[j])
prob.solve()return{'objective':pulp.value(prob.objective),'var':[[pulp.value(var[i][j])for j inrange(col)]for i inrange(row)]}
costs = np.array([[500,550,630,1000,800,700],[800,700,600,950,900,930],[1000,960,840,650,600,700],[1200,1040,980,860,880,780]])
max_plant =[76,88,96,40]
max_cultivation =[42,56,44,39,60,59]
res = transportation_problem(costs, max_plant, max_cultivation)print(f'最大值为{res["objective"]}')print("各个变量的取值为:")
pprint(res['var'])
运行结果:
说明
运行环境:Vs Code
结语
学习来源:B站及其课堂PPT,对其中代码进行了复现
链接:https://www.bilibili.com/video/BV12h411d7Dm? from=search&seid=5685064698782810720
文章仅作为学习笔记,记录从0到1的一个过程
希望对您有所帮助,如有错误欢迎小伙伴指正~
我是 海轰ଘ(੭ˊᵕˋ)੭
如果您觉得写得可以的话,请点个赞吧
谢谢支持 ❤️
版权归原作者 海轰Pro 所有, 如有侵权,请联系我们删除。