0


pyflink 时序异常检测——PEWMA

在这里插入图片描述

PEWMA 和 EWMA 区别

EWMA:

       μ 
      
     
       t 
      
     
    
      = 
     
    
      α 
     
     
     
       μ 
      
      
      
        t 
       
      
        − 
       
      
        1 
       
      
     
    
      + 
     
    
      ( 
     
    
      1 
     
    
      − 
     
    
      α 
     
    
      ) 
     
     
     
       X 
      
     
       t 
      
     
    
   
     \mu_t = \alpha \mu_{t-1} + (1 - \alpha ) X_t 
    
   
 μt​=αμt−1​+(1−α)Xt​

PEWMA:

       μ 
      
     
       t 
      
     
    
      = 
     
    
      α 
     
    
      ( 
     
    
      1 
     
    
      − 
     
    
      β 
     
     
     
       P 
      
     
       t 
      
     
    
      ) 
     
     
     
       μ 
      
      
      
        t 
       
      
        − 
       
      
        1 
       
      
     
    
      + 
     
    
      ( 
     
    
      1 
     
    
      − 
     
    
      α 
     
    
      ( 
     
    
      1 
     
    
      − 
     
    
      β 
     
     
     
       P 
      
     
       t 
      
     
    
      ) 
     
    
      ) 
     
     
     
       X 
      
     
       t 
      
     
    
   
     \mu_t = \alpha (1 - \beta P_t) \mu_{t-1} + (1 - \alpha (1 - \beta P_t)) X_t 
    
   
 μt​=α(1−βPt​)μt−1​+(1−α(1−βPt​))Xt​

其核心思想:

We choose to adapt weights α by 1 − βPt such that samples that are less likely to have been observed offer little influence to the updated estimate.
在这里插入图片描述

pyflink

数据构造

import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
y = np.array([ np.random.random()*10+50*int(np.random.random()>0.99)*np.sign(np.random.random()-0.5)for _ inrange(1000)])
y[:len(y)//2]+=200
y +=100
plt.figure(figsize=(20,5))
plt.plot(y)

在这里插入图片描述

pyflink

from pyflink.common.typeinfo import Types
from pyflink.datastream import StreamExecutionEnvironment
# from pyflink.table import (DataTypes, TableDescriptor, Schema, StreamTableEnvironment)from pyflink.datastream.functions import RuntimeContext, MapFunction
from pyflink.datastream.state import ValueStateDescriptor

classPEWMA(MapFunction):def__init__(self):
        self.INIT_NUM =30
        self.alpha =1-1/self.INIT_NUM
        self.exp_x =None
        self.sigma_square =None
        self.init_count =None
        self.beta =0.5defopen(self, runtime_context: RuntimeContext):
        self.exp_x = runtime_context.get_state(
            ValueStateDescriptor("exp_x", Types.FLOAT())# 信号均值估计)
        self.sigma_square = runtime_context.get_state(
            ValueStateDescriptor("sigma_square", Types.FLOAT())# 偏离量的方差估计)
        self.init_count = runtime_context.get_state(
            ValueStateDescriptor("init_count", Types.INT())# 前期计数)defmap(self, value):
        x = value[1]# retrieve the current state
        exp_x = self.exp_x.value()if self.exp_x.value()isnotNoneelse x
        sigma_square = self.sigma_square.value()if self.sigma_square.value()isnotNoneelse0.
        init_count = self.init_count.value()if self.init_count.value()isnotNoneelse0
        alpha = self.alpha

        
        diff =abs(x-exp_x)# update the stateif init_count < self.INIT_NUM:
            init_count +=1
            alpha =1-1/init_count  # 保证前期的均值估计是准确的,因为EWMA在前期收初值影响大else:
            P =0.39894228* np.exp(-0.5*diff*diff/sigma_square)# adapt weights α by 1 − βP such that samples that are less likely to have been observed offer little influence to the updated estimate.# 如果当前观测值出现的概率很小,就尽量不要用它来更新均值方差估计
            alpha *=1- self.beta * P

        # update estimate with adjusted alpha
        exp_x =  alpha * exp_x +(1- alpha)* x
        sigma_square = alpha * sigma_square +(1- alpha)* diff * diff
        
        self.exp_x.update(exp_x)
        self.sigma_square.update(sigma_square)
        self.init_count.update(init_count)
        
        sigma = np.sqrt(sigma_square)return value[0], x, exp_x, diff, sigma, diff >3*sigma  # 返回 (key_by字段,原始信号,期望信号,实际偏移量,偏移量方差,是否异常)

env = StreamExecutionEnvironment.get_execution_environment()# 为了验证分组特性, 添加一个分组字段
ds = env.from_collection(
    collection=[('alice',float(i))for i in y
    ]+[('bob',float(i))for i in y
    ],
    type_info=Types.TUPLE([Types.STRING(), Types.FLOAT()]))# apply the process function onto a keyed stream
ds =(
    ds.key_by(lambda value: value[0]).map(PEWMA(), output_type=Types.TUPLE([Types.STRING(), Types.FLOAT(), Types.FLOAT(), Types.FLOAT(),Types.FLOAT(), Types.BOOLEAN()])))

ds.print()# submit for execution
env.execute()
16> (alice,300.4562,300.4562,0.0,0.0,false)
16> (alice,304.18646,302.32135,3.7302551,2.6376886,false)
16> (alice,353.12448,319.2557,50.803146,29.410172,false)
16> (alice,306.1917,315.98972,13.064006,26.294214,false)
16> (alice,307.6791,314.3276,8.310608,23.81012,false)
16> (alice,301.60532,312.2072,12.722278,22.347504,false)
16> (alice,307.79276,311.57657,4.414459,20.756935,false)
16> (alice,307.29886,311.04187,4.2777185,19.47515,false)
16> (alice,300.1238,309.82874,10.918053,18.718546,false)
16> (alice,302.92087,309.13797,6.9078774,17.891825,false)
......

转 table api

from pyflink.table import(DataTypes, Schema, StreamTableEnvironment)
t_env = StreamTableEnvironment.create(stream_execution_environment=env)
table = t_env.from_data_stream(
    ds,
    Schema
    .new_builder().column("f0", DataTypes.STRING()).column("f1", DataTypes.FLOAT()).column("f2", DataTypes.FLOAT()).column("f3", DataTypes.FLOAT()).column("f4", DataTypes.FLOAT()).column("f5", DataTypes.BOOLEAN()).build()).alias("user","raw","expected","diff","sigma","isAbnomal")
df = table.to_pandas()
df = df[df["user"]=='alice'].reset_index()
df

在这里插入图片描述

matplotlib 画图

_, ax = plt.subplots(1,1,figsize=(20,5))

df[["raw","expected","diff","sigma","isAbnomal"]].plot(ax=ax)
locs =list(df[df['isAbnomal']].index)
plt.plot(locs, y[locs],'ro')

在这里插入图片描述
结果分析:

  • 初始阶段,漏报一次脉冲异常
  • 信号阶跃后,漏报两个脉冲异常
  • 平稳状态下,误报两次,毕竟3sigma

和 EWMA 对比

EWMA 的方差收敛更慢,更容易产生漏报,所以该论文的改进效果是有的
在这里插入图片描述


本文转载自: https://blog.csdn.net/itnerd/article/details/143104774
版权归原作者 颹蕭蕭 所有, 如有侵权,请联系我们删除。

“pyflink 时序异常检测——PEWMA”的评论:

还没有评论