AI上推荐 之 多任务loss优化(自适应权重篇)
1. 写在前面在多任务学习中,往往会将多个相关的任务放在一起来学习。例如在推荐系统中,排序模型同时预估候选的点击率和浏览时间。相对于单任务学习,多任务学习有以下优势:多个任务共享一个模型,占用内存量减少;多个任务一次前向计算得出结果,推理速度增加;关联任务通过共享信息,相互补充,可以提升彼此的表现。
AI上推荐 之 多任务loss优化(自适应权重篇)
1. 写在前面在多任务学习中,往往会将多个相关的任务放在一起来学习。例如在推荐系统中,排序模型同时预估候选的点击率和浏览时间。相对于单任务学习,多任务学习有以下优势:多个任务共享一个模型,占用内存量减少;多个任务一次前向计算得出结果,推理速度增加;关联任务通过共享信息,相互补充,可以提升彼此的表现。