智能算法系列之基于粒子群优化的模拟退火算法
本篇是[智能算法(Python复现)]专栏的第四篇文章,主要介绍粒子群优化算法与模拟退火算法的结合,以弥补各自算法之间的不足。
模拟退火算法介绍和实例实现
一、模拟退火算法简介模拟退火算法(SA)来源于固体退火原理,是一种基于概率的算法。将固体加温至充分高的温度,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,分子和原子越不稳定。而徐徐冷却时粒子渐趋有序,能量减少,原子越稳定。在冷却(降温)过程中,固体在每个温度都达到平衡态,最后在常温
模拟退火算法介绍和实例实现
一、模拟退火算法简介模拟退火算法(SA)来源于固体退火原理,是一种基于概率的算法。将固体加温至充分高的温度,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,分子和原子越不稳定。而徐徐冷却时粒子渐趋有序,能量减少,原子越稳定。在冷却(降温)过程中,固体在每个温度都达到平衡态,最后在常温
模拟退火算法求解TSP问题(python)
旅行商问题大家都应该非常熟悉了,解法也很多,比如贪婪算法、Dijkstra算法等等,本文参考《MATLAB智能算法30个案例分析(第2版)》中第19章的内容,利用模拟退火算法求解TSP问题并给出了python实现版本TSP问题描述如下:关于模拟退火算法的原理,书籍和文章均比较多,这里就不再赘述,大家