AI实践与学习4_大模型之检索增强生成RAG实践
论文Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks (知识密集型 NLP 任务的检索增强生成)作者们探讨了如何通过结合预训练的语言模型和非参数记忆(即检索机制)来提高自然语言处理(NLP)任务的性能,特别是在需要大量知
RAG 2.0架构详解:构建端到端检索增强生成系统
当前RAG的问题在于各个子模块之间并没有完全协调,就像一个缝合怪一样,虽然能够工作但各部分并不和谐,所以我们这里介绍RAG 2.0的概念来解决这个问题。
RAG应用程序的12种调优策略:使用“超参数”和策略优化来提高检索性能
本文从数据科学家的角度来研究检索增强生成(retrieve - augmented Generation, RAG)管道。讨论潜在的“超参数”,这些参数都可以通过实验来提高RAG管道的性能。