AI:286-提升YOLOv8性能 | 集成MLCA混合局部通道注意力机制的研究与应用

YOLO(You Only Look Once)系列模型以其卓越的实时目标检测能力在计算机视觉领域取得了广泛应用。YOLOv8在之前版本的基础上进行了优化,提升了模型的精度和效率。然而,在处理复杂背景和小物体检测任务时,YOLOv8仍有提升的空间。MLCA(Mixed Local Channel A

AI:293-提升YOLOv8性能 | 集成iRMB倒置残差块注意力机制的轻量化改进

iRMB倒置残差块是一种高效的卷积模块,主要用于提高模型的表达能力和计算效率。它结合了倒置残差块和注意力机制,使得模型能够更好地关注关键区域并减少计算量。倒置残差块(Inverted Residual Block):通过深度可分离卷积减少计算复杂度,同时保持较高的特征表达能力。注意力机制:通过权重调

AI:264-自然语言处理中的情感分析与文本生成技术

情感分析(Sentiment Analysis)旨在确定文本的情感极性,通常分为积极、消极和中性。常见的应用包括产品评论分析、社交媒体情感监测等。现代情感分析方法多基于深度学习模型,如LSTM(长短期记忆网络)和BERT(Bidirectional Encoder Representations f

AI:262-基于深度学习的图像分类算法优化与性能提升实践

图像分类是指将输入的图像分为若干类别的任务。基于深度学习的图像分类模型通常由卷积层、池化层和全连接层组成。卷积层用于提取图像的特征,池化层用于下采样以减少计算量,全连接层则用于最终的分类。

登录可以使用的更多功能哦! 登录
作者榜
...
资讯小助手

资讯同步

...
内容小助手

文章同步

...
Deephub

公众号:deephub-imba

...
奕凯

公众号:奕凯的技术栈