XGBoost和LightGBM时间序列预测对比
XGBoost和LightGBM都是目前非常流行的基于决策树的机器学习模型,它们都有着高效的性能表现,但是在某些情况下,它们也有着不同的特点。
LazyProphet:使用 LightGBM 进行时间序列预测
但是当在单变量情况下使用增强树时,由于没有大量的外生特征可以利用,它的性能非常的糟糕。LazyProphet通过新的特征生成方法可以大大提高树型模型处理时序数据的性能
XGBoost和LightGBM都是目前非常流行的基于决策树的机器学习模型,它们都有着高效的性能表现,但是在某些情况下,它们也有着不同的特点。
但是当在单变量情况下使用增强树时,由于没有大量的外生特征可以利用,它的性能非常的糟糕。LazyProphet通过新的特征生成方法可以大大提高树型模型处理时序数据的性能