AI:291-深度融合BiFPN与RepViT | YOLOv8改进的前沿探索与实践

YOLOv8作为YOLO系列的最新版本,通过多项技术改进提升了检测精度和速度。YOLOv8的核心架构包括主干网络、特征金字塔网络(FPN)、以及检测头。尽管其性能已经非常强劲,但进一步的改进空间仍然存在。BiFPN(Bidirectional Feature Pyramid Network)是一种用

浅谈BiFPN结构并在mmdetection中从Registry开始逐步实现

BiFPN可以作为一个常备块在修改网络时使用。在用代码实现BiFPN之前,我们需要对其网络结构及细节原理有一个清晰的认识,下图时BiFPN的原理图:该图清晰明了的阐明了BiFPN的数据流向,下面做进一步具体分析:图中所有Add操作均为用可学习的权重参数进行加权特征融合而非直接的Add相加。由于权重的

登录可以使用的更多功能哦! 登录
作者榜
...
资讯小助手

资讯同步

...
内容小助手

文章同步

...
Deephub

公众号:deephub-imba

...
奕凯

公众号:奕凯的技术栈